Recently, the spatial mode multiplexing based on optical vortices (OVs) attracts much attentions as a promissing technology for high-capacity optical communications. For such OV-based telecommunications, optical components for mode decomposition with respect to azimuth mode indices (topological charges) — so-called orbital angular momentum (OAM) sorters — are key devices, and various kinds of OAM sorters have been demonstrated such as computer-generated holograms as far. Among them, the geometric transformation (GT) technique has great advantages that the insertion loss is quite low and it supports inverse transformation (multiplexing) [1]. In earlier studies, GT-based OAM sorters have been realized by using spatial light modulators (SLMs) [1], and more recently, transparent refractive elements produced by using such as diamond machining [2] and Pancharatnam Berry phase [3] have been demonstrated. However, the GT-based method has the serious disadvantage of relatively large crosstalk between the neighboring modes.

© 2019 IEEE

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription