Directly studying the dynamics of nanoparticles with subwavelength dimensions, for example protein interactions or viral self-assembly, is difficult using conventional light microscopes due to Abbe’s resolution limit. Methods to overcome this limit such as fluorescence microscopy usually require to label particles and suffer from photobleaching in the case of long illumination times. A recent tracking method based on elastic light scattering from nano-objects inside a microstructured fiber which includes a nanometer sized channel managed to circumvent these limitations [1]. However, due to the small channel size, this approach imposes high spatial constraints on the particle motion, impedes the investigation of multi-particle dynamics and allows very little control over the liquid flow inside the fiber.

© 2019 IEEE

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription