Liquid biopsy has shown remarkably promising in oncology for the early diagnosis of cancer through the detection of circulating biomarkers such as circulating tumor cells (CTCs). Recent evidences suggest that CTCs represent effective prognostic and predictive biomarkers to monitor/predict therapy efficacy in breast, colon and prostate cancers [1,2]. However, the frequency of CTCs in blood is approximately 1 to 10 cells per 10 mL of blood, which is as challenging as looking for a needle in a haystack. In microfluidics, Digital Holography (DH) has been shown to be a promising technique to characterize CTCs with the aim to detect them inside a heterogeneous liquid sample. DH is label-free, real-time and gives access to the complex amplitude of the object [3-6]. Thus, any classification approach based on the holographic signature can exploit a reach information content to take a decision. Moreover, the flexible refocusing capability of DH imaging allows to inspect an entire liquid volume with a single capture. This enables the high-throughput inspection of blood and other bodily fluids rapidly flowing inside microfluidic channels.

© 2019 IEEE

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription