The recent development of high repetition rate lasers based on ytterbium-doped fiber amplifiers (YDFA), has paved the way to increase the repetition rate (>100 kHz) of coherent extreme ultra violet (XUV) sources generated by high harmonic generation (HHG). High repetition rate HHG driver comes with several advantages, such as increased photon flux [1], reduction of the acquisition time in coincidence experiments to study molecular dynamics such as COLTRIMS, and the possibility to study the electronic structure of matter via photoemission spectroscopy and microscopy, where low doses are needed to avoid space-charge effects [2].

© 2019 IEEE

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription