Abstract

In contrast to conventional electronics, where only the charge of electrons is considered, spintronics is based on the utilization of both charge and spin. Due to this additional degree of freedom, spintronic devices can potentially provide higher processing speed or better energy efficiency [1,2]. However, while sub-femtosecond control of the electronic properties of solids has previously been demonstrated [3], the lack of direct coupling between light and spin has limited the manipulation speed of magnetic properties to the few-tens-of-femtoseconds timescale. Here we introduce a technique able to follow the magnetic properties of a solid with attosecond resolution and demonstrate the direct sub-femtosecond all-optical manipulation of its spin degrees of freedom.

© 2019 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription