Abstract

Efficient, diode-pumped high energy femtosecond laser systems around 1 µm based on Yb-gain media are readily commercially available. However, owing to the gain bandwidth limitations, the pulses generated in such lasers are substantially longer than the ones generated in Ti:Sapphire systems. A simple, energy-scalable pulse self-compression scheme for the pulses around 1 µm thus would be of great interest for many applications, including time-resolved pump-probe spectroscopy, high-harmonics generation, etc. The self-phase modulation during nonlinear propagation in filaments in gasses is often employed for pulse self-compression [1,2]. Such schemes typically require rather bulky setups and careful control of group velocity dispersion. Some years ago it has been shown theoretically that Raman-active molecules in gaseous form could be used for mid-infrared pulse compression [3].

© 2019 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription