Silicon nitride (SiN) waveguides are a promising platform for nonlinear photonic devices, as it offers a large bandgap, low two-photon absorption, CMOS-compatible fabrication methods and a significant nonlinearity [1,2]. Prominent applications are optical frequency comb generation [2] and supercontinuum generation [3]. These applications require waveguides with an anomalous group velocity dispersion in order to be efficient, which can be achieved by tailoring the waveguide dimensions [2,3]. Optical-quality SiN films are commonly deposited by LPCVD, however the high processing temperatures (> 800 ° C) can cause a high layer stress and crack formation. In this work we investigate reactive magnetron sputtering (PVD) as a method for low temperature (< 150 °C) deposition of SiN thin-films for optical waveguides.

© 2019 IEEE

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription