The emergence of nanomaterials with their often superior mechanical, electronic and optical properties compared with bulk form demands a robust technology that can synthesize, modify and pattern scalably and cost effectively. This can be fulfilled via laser processing protocols which produce such materials with both high precision and excellent spatial controllability [1]. Direct laser synthesis of nanomaterials such as graphene and nano-structured metal oxides have been explored thoroughly for a wide range of applications [2,3]. However, to date, there are only a few reports associated with the laser processing of two-dimensional transition metal dichalcogenides (2D-TMDCs) [4]. These mainly utilize laser radiation for thinning TMDC films through sublimation down to a single molecular thickness [1]. However, this top-down approach is not practical for large-area and scalable production. In addition, further processing steps such as lithographic patterning are then required for discrete device fabrication.

© 2019 IEEE

PDF Article
More Like This
Preparation and Characterization of Two-Dimensional Layered Transition Metal Dichalcogenide Thin Films

Kun Chen, Li Tao, Xi Wan, and Jian-Bin Xu
PTh3D.1 Photonics for Energy (PFE) 2019

Growth of Large-Area, Uniform, Few-Layer Tungsten Disulphide by Thermal Decomposition of Ammonium Tetrathiotungstate

Omar Adnan Abbas, He Wang, Adam Henry Lewis, Neil Sessions, Nikos Aspiotis, Chung-Che Huang, Ioannis Zeimpekis, Dan Hewak, Sakellaris Mailis, and Pier Sazio
ei_p_17 European Quantum Electronics Conference (EQEC) 2019

Z-scan Characterization of Two-Dimensional Transition Metal Dichalcogenide Few-Layer Sheets

S. Bikorimana, P. Lama, A. Walser, R. Dorsinville, S. Anghel, A. Mitioglu, A. Micu, and L. Kulyuk
JTh2A.71 CLEO: Applications and Technology (CLEO_AT) 2016


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription