Abstract

High-Q microring resonators have applications in gyroscopes, frequency comb generation, and feedback systems to control narrow linewidth integrated lasers [1-3]. This paper demonstrates the highest Q values measured for microring resonators at 780 nm wavelength. These sub mm integrated cavities can be used to provide an error signal for locking a distributed feedback laser (DFB), Fig. 1(a), using the Pound-Drever-Hall (PDH) method. High stability DFBs can also be achieved using a micro-electro-mechanical system (MEMS) cell containing 87Rb vapour and taking advantage of the absorption line at 780.24 nm. This provides an absolute reference for locking the laser but only to the 87Rb transition wavelengths. The microring resonator can be tailor made for any wavelength but is susceptible to thermal effects; this could in part be overcome using a top cladding with a thermo-optic coefficient that counteracts that of the waveguide core.

© 2019 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription