Si3N4 platforms have promising features including low waveguide loss (<0.1 dB/cm), wide transparency window (0.4–2.35 μm), and compatibility with CMOS technology [1]. Low-cost and high-performance integration technologies are instrumental for providing active functionalities to the Si3N4 platform. Lasers on Si3N4 platforms have been realized using hybrid integration of InP [1] and monolithic integration of rare-earthion doped Al2O3 materials [2]. To independently guide the modes in monolithically integrated Al2O3 and Si3N4 waveguides, a double-layer platform has been studied in our previous work [3]. This enables to achieve high mode confinement and field intensity in the Al2O3 waveguide core, which is beneficial for reducing pump power threshold to obtain net gain of amplifiers. In this paper, we experimentally demonstrate the Al2O3:Er3+-Si3N4 optical amplifiers based on the double-layer monolithic integration. On-chip net gain of ~10 dB is obtained for a 5.9 cm long fully integrated amplifier at the signal wavelength of 1532 nm under pumping at 976.2 nm.

© 2019 IEEE

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription