Diamond is an exceptional material due to its hardness, high thermal conductivity and transparency from the UV to far IR. Recently it has caught the attention of the scientific community because it is the host of different color centers that can be used for magnetic sensing applications and quantum computing [1]. One of the most promising of these defects is the nitrogen-vacancy (NV) center. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532-nm laser light. The NV's states are isolated from environmental perturbations, making their spin coherence times long even at room temperature. The NVs can be easily initialized, manipulated and read out using light. Therefore, an important breakthrough would be in connecting, using optical waveguides, multiple diamond NVs.

© 2017 IEEE

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription