Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • CLEO/Europe and EQEC 2011 Conference Digest
  • OSA Technical Digest (CD) (Optica Publishing Group, 2011),
  • paper CB9_4

Direct Observation of Slow Light in the Noise Spectrum of a Laser

Not Accessible

Your library or personal account may give you access

Abstract

Coherent population oscillations (CPO), an ubiquitous mechanism inducing slow and fast light (SFL), is present in any active medium provided that a strong optical beam saturates this medium. Thus, CPO must be present in any single frequency laser since the oscillating beam acts as a strong pump which saturates the active medium. This effect could be observed using an external probe whose angular frequency is detuned with respect to the oscillating mode, by less than the inverse of the population inversion lifetime. This effect should be visible in the laser excess noise, using the spontaneous emission present in the non-lasing side longitudinal modes of a single-frequency laser as probe of the CPO effect. Class-A vertical external cavity surface emitting semiconductor lasers (VECSELs) [1] recently developed for their low noise characteristics make them perfectly suited for the observation of CPO induced SFL in their noise spectrum. The single-frequency laser used in our experiment is a VECSEL which operates at 1 µm. We focus on the excess noise due to the beat notes between the laser line and the spontaneous emission noise at neighboring longitudinal mode frequencies [2,3]. At the pthFSR frequency pΔ, the noise spectrum is thus the sum of two Lorentzian peaks due to the beat notes of the lasing mode with the corresponding sidebands (pthand −pthmodes). When the pumping rate is increased, we found experimentally that the excess noise consists of two peaks separated by δ f= fp− f−p100 kHz (inset of Fig.1(a)). This frequency shift is given by: δfv0LmL+n0Lm(δnp+δnp), where n0 is the bulk refractive index of the semiconductor structure, Land Lmare the length of the cavity and the gain medium respectively. δn±pare the modifications of the refractive index of the structure experienced by the ±pside modes and induced by the dispersion associated with the CPO effect. In a semiconductor active medium, thanks to the Bogatov effect [4], the dispersion is not an odd function of the frequency detuning with respect to ν0. Thus, δnp−δn−pand the two beat note frequencies fpand f−p corresponding to the pand −pmodes occur at slightly different frequencies, as evidenced by the double peak of Fig.1(a). This CPO induced index modification can be derived from the gain medium rate equation including the phase-intensity coupling coefficient α(Henry’s factor) that is responsible for the Bogatov effect. This CPO effect is also responsible for the modification of the refractive index seen by the side modes which modifies the round-trip phase accumulated by each side mode Fig.1(b). Notice also that since the cavity FSR Δ is sufficiently large that we are probe the wings of the dispersion profile of Fig.1(b), i. e., in the slow light regime. In conclusion, we experimentally evidenced the existence of intracavity slow light effects in a laser induced by the CPO mechanism. These effects are probed by the laser spontaneous emission noise present in the non lasing modes.

© 2011 Optical Society of America

PDF Article
More Like This
Direct Observation of Slow Light in the Noise Spectrum of a Laser

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini
JThB65 CLEO: Applications and Technology (CLEO:A&T) 2011

Slow Light Laser Oscillator

Y. Shevy, D. Shevy, R. Lee, and D. Provenzano
OThQ6 Optical Fiber Communication Conference (OFC) 2010

Intermodulation and Harmonic Distortion in Slow Light SOA based Microwave Photonic Phase Shifters

Ivana Gasulla, Juan Sancho, José Capmany, Juan Lloret, and Salvador Sales
JWA051 National Fiber Optic Engineers Conference (NFOEC) 2011

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.