Abstract

By employing a pair of partially overlapped supersonic gas jets, we made a separation of injection and acceleration stages of laser wakefield acceleration and produced stable, quasi-monoenergetic (10–30% FWHM) and tunable (50–300 MeV) electron beams.

© 2014 Optical Society of America

PDF Article
More Like This
Background-Free, Quasi-Monoenergetic Electron Beams from a Self-Injected Laser Wakefield Accelerator

S. Banerjee, S. Kalmykov, N. Powers, V. Ramanathan, N. C.-Smith, K. Brown, S. Chen, A. Moorthi, I. Ghebregziabher, C. Maharjan, B. Shadwick, D. Umstadter, A. Beck, E. Lefebvre, A. Cowan, and D. Bruhwiler
C1094 Conference on Lasers and Electro-Optics/Pacific Rim (CLEOPR) 2011

Quasi-monoenergetic Electron Beams from Mid-IR Laser Wakefield Acceleration in the Bubble Regime

A. Korolov, D. Woodbury, R. Schwartz, and H. M. Milchberg
JW3A.5 Frontiers in Optics (FiO) 2018

Quasi Monoenergetic and Tunable X-rays by Laser Compton Scattering from Laser Wakefield e-beam

Nathan D. Powers, Isaac Ghebregziabher, Gregory Golovin, Cheng Liu, Shouyuan Chen, Sudeep Banerjee, Jun Zhang, and Donald Umstadter
JTh3L.6 CLEO: Applications and Technology (CLEO_AT) 2014

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription