We describe experimental and theoretical studies of open-loop quantum control techniques known as dynamical decoupling (DD) for the suppression of decoherence-induced errors in quantum systems. Our experiments on trapped atomic ion qubits demonstrate that it is possible to optimize the construction of DD sequences for a given noise power spectral density. Studies of novel sequences derived analytically or through numerical optimization – while maintaining fixed control resources – demonstrate large gains in our ability to preserve quantum coherence in arbitrary noise environments.

© 2010 Optical Society of America

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription