Abstract

Interferometric synthetic aperture microscopy (ISAM) is a computed imaging technique to overcome the depth-of-field limitations in optical coherence tomography/microscopy (OCT/OCM). However, the presence of optical aberrations (which typically increase with NA) can degrade the resolution of ISAM reconstructions. We demonstrate a computational adaptive optics (CAO) method to correct aberrations of a virtual (or computed) pupil. Three-dimensional datasets in rabbit muscle tissue show that ISAM with CAO astigmatism correction results in a higher resolution reconstruction than uncorrected ISAM or standard OCT/OCM. We also present our work on high-speed 2D and pseudo-3D ISAM reconstruction using a graphic processing unit (GPU). These results demonstrate ISAM with computational aberration correction in highly scattering tissue. They also demonstrate that with precise high-speed scanning, volumetric ISAM can be performed without phase noise correction, and suggest that with GPU-based processing, real-time volumetric ISAM is feasible.

© 2012 Optical Society of America

PDF Article | Presentation Video

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

Presentation video access is available to:

  1. OSA Publishing subscribers
  2. Technical meeting attendees
  3. OSA members who wish to use one of their free downloads. Please download the article first. After downloading, please refresh this page.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription or free downloads