Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-frequency fiber Bragg gating accelerometer and strain sensor-based blast test on a concrete slab

Not Accessible

Your library or personal account may give you access

Abstract

The blast test is the most direct method of measuring explosive performance and structural safety. Because of long-distance wires and electromagnetic interference, some scattering exists in the blast test using electrical sensors. For this paper, a double-hinge high-frequency fiber Bragg gating (FBG) accelerometer was designed and manufactured to measure the acceleration on a blast-loaded concrete slab. The resonance frequency and sensitiveness of the sensor were determined as 3400 Hz and 6.26 pm/g, respectively. Blasting was performed seven times, with each blast generating the energy equivalent of 50 kg of TNT. The stress waves were obtained from the blast source for distances at 4 m, 6 m, and 8 m. The peak accelerations in test 6 were obtained as 396.21 g, 123.57 g, and 38.88 g, respectively, whereas the propagation velocity of the stress wave was around 2500 m/s. Furthermore, the study was complemented by numerical simulations. The test results were compared with the empirical formula, which validated the reliability and applicability of fiber optical sensors in blast testing. The proposed fiber optical sensors have shown promising results, further boosting their practical applications in blast testing and monitoring structural health following a blast shock.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Miniature bending-resistant fiber grating accelerometer based on a flexible hinge structure

Lei Liang, Hui Wang, Zichuang Li, Shu Dai, and Ke Jiang
Opt. Express 30(19) 33502-33514 (2022)

Cross spring leaf-based high-sensitivity low-frequency dual-FBG acceleration sensor

Yuntian Teng, Bingbing Zhang, Xiaoyong Fan, Jiemei Ma, and Zhongchao Qiu
Appl. Opt. 61(25) 7521-7531 (2022)

Design and experimental study of a fiber Bragg grating strain sensor with enhanced sensitivity

Jianjun Pan, Wei Hou, Liangying Wang, Zisong Zou, and Fan Xiao
Appl. Opt. 61(28) 8172-8179 (2022)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.