Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Generalized circuit model for all-dielectric narrowband metasurface absorbers

Not Accessible

Your library or personal account may give you access

Abstract

All-dielectric metasurface absorbers have great potential in many scientific and technical applications. The emerging metasurfaces show strong and versatile capabilities in controlling absorptance, reflectance, and transmittance of electromagnetic waves. In this work, we propose and investigate all-dielectric metasurface absorbers with an equivalent circuit model. In the proposed circuit model, we satisfy the first Kerker condition. To verify the accuracy of the proposed model, the obtained results for an all-dielectric cubic metasurface absorber are compared with the existing experimental data. Moreover, using the proposed circuit model, we propose a hemisphere structure and compare the results of the proposed model with those of full-wave simulations. With this novel structure, we achieve higher absorptance and quality factor in comparison to a cubic one. Additionally, our proposed model reduces the calculation time and needs less memory compared to full-wave simulations. The results of the circuit model have an acceptable agreement with the experimental data and those of full-wave simulations. The proposed circuit model is simple yet general. It provides physical insight into the design and operation of various sub-wavelength structures in the broad frequency range, including THz and visible regions.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Robust design method for metasurface high-sensitivity sensors and absorbers

Amin Rastgordani and Zahra Ghattan Kashani
J. Opt. Soc. Am. B 37(7) 2006-2011 (2020)

Degenerate critical coupling in all-dielectric metasurface absorbers

Xianshun Ming, Xinyu Liu, Liqun Sun, and Willie J. Padilla
Opt. Express 25(20) 24658-24669 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.