Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mole fraction measurement through a transparent quarl burner using filtered Rayleigh scattering

Not Accessible

Your library or personal account may give you access

Abstract

A filtered Rayleigh scattering system is developed and applied to measure the mole fraction of methane in a methane-air swirl flow through a transparent conical quartz quarl. Light scattering from the location where the laser beam is incident on the surface of the quarl is orders of magnitudes larger than Rayleigh scattering from the gas mixture of interest. This diffusive scattering is suppressed using molecular absorption by an iodine cell and using spatial filtering by an optical aperture. Residual stray light accounted for up to 5% of the total signal and had to be removed for accurate measurements. The flow consisted of a nonpremixed mixture of methane and air in the central jet surrounded by a strong swirling air flow. Measurements were conducted at a height of 4 mm from the fuel tube’s exit for six different conditions of the swirl flow to demonstrate the ability of the instrument to study the effects of swirl strength and fuel flow rate on the mixing process. By using a four-leg pulse stretcher to allow higher laser energies in the probe volume, large collection optics and a reference iodine cell to monitor laser wavelength variations, standard deviations of 0.006 in air and 0.012 in a laminar methane flow were achieved for mole fraction measurements.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering

Sean P. Kearney, Robert W. Schefer, Steven J. Beresh, and Thomas W. Grasser
Appl. Opt. 44(9) 1548-1558 (2005)

Two-dimensional temperature measurements in particle loaded technical flames by filtered Rayleigh scattering

D. Müller, R. Pagel, A. Burkert, V. Wagner, and W. Paa
Appl. Opt. 53(9) 1750-1758 (2014)

Quantitative planar temperature imaging in turbulent non-premixed flames using filtered Rayleigh scattering

Thomas A. McManus and Jeffrey A. Sutton
Appl. Opt. 58(11) 2936-2947 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved