Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Materials design parameters for infrared device applications based on III-V semiconductors

Abstract

The collaborative development of infrared detector materials by the Army Research Laboratory and Stony Brook University has led to new fundamental understandings of materials, as well as new levels of control and flexibility in III-V semiconductor crystal growth by molecular beam epitaxy. Early work on mid-wave strained layer superlattice (SLS) cameras led to a subsequent focus on minority carrier lifetime studies, which resulted in the proposal of the Ga-free SLS on GaSb substrates. The later demonstration of virtual substrate technology allowed the lattice constant to become a design parameter and enabled growth of undistorted bulk InAsSb. When grown in that manner, InAsSb has a bandgap bowing parameter large enough to cover absorption wavelengths across the entire long-wavelength band (8–12 μm). Even longer wavelengths are achieved with a general Ga-free SLS approach, with a virtual substrate having a lattice constant significantly larger than that of GaSb and with InAsSb in both bi-layers in the period. Since these layers can also be made very thin, the general Ga-free SLS does not suffer from the relatively low optical absorption and poor hole transport, which is characteristic of the special Ga-free SLS on GaSb for long-wavelength designs. Finally, the general Ga-free InAsSb SLS provides a method to induce and control sustained atomic ordering, which is yet another new design parameter.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
High-performance infrared photodetectors based on InAs/InAsSb/AlAsSb superlattice for 3.5 µm cutoff wavelength spectra

Junkai Jiang, Guowei Wang, Donghai Wu, Yingqiang Xu, Faran Chang, Wenguang Zhou, Nong Li, Dongwei Jiang, Hongyue Hao, Suning Cui, Weiqiang Chen, Xueyue Xu, Haiqiao Ni, Ying Ding, and Zhi-Chuan Niu
Opt. Express 30(21) 38208-38215 (2022)

Performance comparison between the InAs-based and GaSb-based type-II superlattice photodiodes for long wavelength infrared detection

Fangfang Wang, Jianxin Chen, Zhicheng Xu, Yi Zhou, and Li He
Opt. Express 25(3) 1629-1635 (2017)

Molecular beam epitaxial growth and characterization of large-format GaSb-based IR photodetector structures [Invited]

Amy W. K. Liu, Dmitri Lubyshev, Joel M. Fastenau, Scott Nelson, Michael Kattner, and Phillip Frey
Opt. Mater. Express 8(5) 1282-1289 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.