Abstract

The drive for shorter pulses for use in techniques such as high harmonic generation and laser wakefield acceleration requires continual improvement in post-laser pulse compression techniques. The two most commonly used methods of pulse compression for high intensity pulses are hollow capillary compression via self-phase modulation (SPM) [1] and the more recently developed filamentation [2]. Both of these methods can require propagation distances of 1-3 m to achieve spectral broadening and compression. Additionally, hollow capillary compression requires post compression of the broadened pulse by chirped mirrors. Filamentation trades the efficiency of hollow capillary compression (67%) for ionisation-induced pulse self-compression. A mixture of SPM and plasma generation increases the spectral bandwidth of the pulse; however this occurs only in a small region at the centre of the beam. Spatial filtering is required to achieve the shortest pulses, reducing the efficiency to 20%. Although the majority of hollow core capillary compression requires long propagation distances, compression in short capillaries [3] with significant plasma generation has been demonstrated to be a promising technique.

© 2011 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription