Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Suppression of backreflection error in resonator integrated optic gyro by the phase difference traversal method

Not Accessible

Your library or personal account may give you access

Abstract

The phase difference traversal (PDT) method is proposed to suppress the backreflection-induced error in resonator integrated optic gyro (RIOG). Theoretical analysis shows that the backreflection-induced zero-bias fluctuation is periodical and sine/cosine-like. By forcing the phase difference between the CW and CCW incident light to traverse the interval [0, 2π] repeatedly and rapidly enough, the fluctuation can be low-pass filtered and, hence, the backreflection-induced error can be effectively suppressed. A RIOG apparatus is built up, with multi-wave hybrid phase modulation to traverse the phase difference and in-phase modulation to set the operation point. A short-term bias stability of 0.0055 deg/s and a long-term bias stability of 0.013 deg/s are successfully demonstrated which, to the best of our knowledge, are the best results reported to date for the buried-type silica waveguide ring resonator-based RIOG.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhanced differential detection technique for the resonator integrated optic gyro

Qiwei Wang, Lishuang Feng, Hui Li, Xiao Wang, Yongze Jia, and Danni Liu
Opt. Lett. 43(12) 2941-2944 (2018)

Reduction of angle random walk by in-phase triangular phase modulation technique for resonator integrated optic gyro

Junjie Wang, Lishuang Feng, Qiwei Wang, Xiao Wang, and Hongchen Jiao
Opt. Express 24(5) 5463-5468 (2016)

Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology

Lishuang Feng, Ming Lei, Huilan Liu, Yinzhou Zhi, and Junjie Wang
Appl. Opt. 52(8) 1668-1675 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.