Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

400-Hz mechanical scanning optical delay line

Not Accessible

Your library or personal account may give you access

Abstract

We have developed a simple, high-speed, nearly vibration-free, mechanically scanned, optical delay line suitable for femtosecond time-resolved signal-averaging measurements. We demonstrate a 2-ps time window autocorrelator with a display updated at 400 Hz. The delay line uses a dithering planar mirror as a time-varying linear phase ramp in the spectral plane of a modified grating–lens femtosecond pulse shaper. The time delay is linearly proportional to the angular deviation of the mirror. The high speed and low vibration are a result of the extremely small angular changes required to generate a large time delay.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
High-speed phase- and group-delay scanning with a grating-based phase control delay line

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto
Opt. Lett. 22(23) 1811-1813 (1997)

Fast scanning transmissive delay line for optical coherence tomography

Carla C. Rosa, John Rogers, and Adrian Gh. Podoleanu
Opt. Lett. 30(24) 3263-3265 (2005)

Photorefractive delay line for the visualization and processing of time-dependent signals

Gan Zhou and Dana Z. Anderson
Opt. Lett. 18(2) 167-169 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.