Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultrathin, polarization-insensitive multi-band absorbers based on graphene metasurface with THz sensing application

Not Accessible

Your library or personal account may give you access

Abstract

This article presents multi-band plasmonic absorbers based on a graphene array at terahertz frequencies. The absorbers are made of a very simple structure including a graphene disk array printed on the top surface of a dielectric spacer backed by a metallic ground plane. Multi-band performance is achieved with more than 90% absorption in the 1–8 THz frequency range by exciting surface plasmon polaritons of graphene. It is shown that the resonance frequencies of the proposed absorber can be tuned by varying the chemical potential between 0.8–1 eV for a triple-band absorber and 0.7–0.9 eV for a quad-band one, while keeping more than 80% absorption. The results obtained by means of full-wave simulation are verified with the results obtained by the analytical circuit model. The proposed absorbers are polarization-insensitive and provide stable absorption performance for both of the TE and TM polarizations. As an application, we designed a refractive index sensor based on the triple-band absorber. The results verify that the absorption bands are sensitive to the variations of the refractive index of the coating layer.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
High-sensitivity and independently tunable perfect absorber using a nanohole and a cross-shaped graphene

Zahra Mahdavikia, Yaser Hajati, Mohammad Sabaeian, and Zeinab Zanbouri
J. Opt. Soc. Am. B 38(5) 1487-1496 (2021)

Polarization-sensitive tunable multi-band terahertz absorber based on single-layered graphene rings

Peng Chen, Mingjun Tang, Aiyun Liu, Yishan Hu, Ling Li, Weidong Chen, Yarong Su, Yijia Huang, Jie Zheng, Ke Liu, and Zhengwei Xie
J. Opt. Soc. Am. B 38(10) 3000-3008 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.