Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantum low probability of intercept

Abstract

Conventional cryptography—such as the Rivest–Shamir–Adleman public-key infrastructure—may be rendered insecure by the ever-increasing capabilities of classical computers and the emergence of quantum computers. Quantum key distribution and post-quantum cryptography are presently being pursued as solutions to the quantum threat, but they offer no protection against an adversary who has obtained decryption keys by hacking the computer where they are stored, or by bribing a code clerk who has access to them. This paper introduces a protocol, which we call quantum low probability of intercept (QLPI), that has the potential to solve the key-disclosure problem. It transmits a ciphertext in such a way that laws of physics prevent an eavesdropper’s obtaining anything but an error-ridden version of that ciphertext from an individual attack or a restricted class of collective attacks. Consequently, even were an adversary to possess the decryption key, the plain text could not be recovered from such attacks. Furthermore, QLPI is capable of gigabits per second communication rates on optical fiber over metropolitan-area distances without space-division or wavelength-division multiplexing and without the need for any new technology.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantum hacking on a free-space quantum key distribution system without measuring quantum signals

Min Soo Lee, Min Ki Woo, Yong-Su Kim, Young-Wook Cho, Sang-Wook Han, and Sung Moon
J. Opt. Soc. Am. B 36(3) B77-B82 (2019)

Optimized attacks on twin-field quantum key distribution

Stephen M. Barnett, Thomas Brougham, Sarah Croke, and Simon J. D. Phoenix
J. Opt. Soc. Am. B 36(3) B122-B129 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.