Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 35,
  • Issue 6,
  • pp. 1280-1289
  • (2017)

Throughput Gains From Adaptive Transceivers in Nonlinear Elastic Optical Networks

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we link the throughput gains, due to transceiver adaptation, in a point-to-point transmission link to the expected gains in a mesh network. We calculate the maximum network throughput for a given topology as we vary the length scale. We show that the expected gain in the network throughput due to transceiver adaptation is equivalent to the gain in a point-to-point link with a length equal to the mean length of the optical paths across the minimum network cut. We also consider upper and lower bounds on the variation of the gain in the network throughput due to transceiver adaptation, where integer-constrained channel bandwidth assignment and quantized adaptations are considered. This bounds the variability of results that can be expected and indicates why some networks can give apparently optimistic or pessimistic results. We confirm the results of previous authors that show finer quantization steps in the adaptive control lead to an increase in the throughput since the mean loss of throughput per transceiver is reduced. Finally, we consider the likely network advantage of digital nonlinear mitigation and show that a significant tradeoff occurs between the increase in the signal-to-noise ratio for larger mitigation bandwidths and the loss of throughput when routing fewer large-bandwidth superchannels.

© 2017 IEEE

PDF Article
More Like This
Routing, Modulation Level, and Spectrum Assignment in Optical Metro Ring Networks Using Elastic Transceivers

Cristina Rottondi, Massimo Tornatore, Achille Pattavina, and Giancarlo Gavioli
J. Opt. Commun. Netw. 5(4) 305-315 (2013)

Cross-Layer Adaptive Elastic Optical Networks

Ippokratis Sartzetakis, Konstantinos Christodoulopoulos, and Emmanuel Varvarigos
J. Opt. Commun. Netw. 10(2) A154-A164 (2018)

Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]

Seb J. Savory, Robert J. Vincent, and David J. Ives
J. Opt. Commun. Netw. 11(10) C76-C85 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved