Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 47,
  • Issue 7,
  • pp. 875-881
  • (1993)

Noninvasive Blood Glucose Assay by Near-Infrared Diffuse Reflectance Spectroscopy of the Human Inner Lip

Not Accessible

Your library or personal account may give you access

Abstract

Near-infrared (NIR) spectra of the human inner lip were obtained by using a special optimized accessory for diffuse reflectance measurements. The partial-least squares (PLS) multivariate calibration algorithm was applied for linear regression of the spectral data between 9000 and 5500 cm<sup>−1</sup> (λ = 1.1-1.8 μm) against blood glucose concentrations determined by a standard clinical enzymatic method. Calibration experiments with a single person were carried out under varying conditions, as well as with a population of 133 different patients, with capillary and venous blood glucose concentration values provided. A genuine correlation between the blood glucose concentrations and the NIR-spectra can be proven. A time lag of about 10 min for the glucose concentration in the spectroscopically probed tissue volume vs. the capillary concentration can be estimated. Mean-square prediction errors obtained by cross-validation were in the range of 45 to 55 mg/dL. An analysis of different variance factors showed that the major contribution to the average prediction uncertainty was due to the reduced measurement reproducibility, i.e., variations in lip position and contact pressure. The results demonstrate the feasibility of using diffuse reflectance NIR-spectroscopy for the noninvasive measurement of blood glucose.

PDF Article
More Like This
Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism

Saiko Kino, Suguru Omori, Takashi Katagiri, and Yuji Matsuura
Biomed. Opt. Express 7(2) 701-708 (2016)

Noninvasive in vivo glucose sensing on human subjects using mid-infrared light

Sabbir Liakat, Kevin A. Bors, Laura Xu, Callie M. Woods, Jessica Doyle, and Claire F. Gmachl
Biomed. Opt. Express 5(7) 2397-2404 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved