Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Graphene/liquid crystal hybrid tuning terahertz perfect absorber

Not Accessible

Your library or personal account may give you access

Abstract

We present, by simulations, a metastructured graphene/liquid crystal hybrid tuning terahertz perfect absorber that consists of graphene disk resonator arrays above a metallic layer separated with liquid crystal substrate. The liquid crystal refractive index and the graphene Fermi level are utilized to implement double-tuning operation to push the spectra scanning limit of the terahertz absorber. Our simulations demonstrate high performance of a near-linear broad tuning region and near-unity absorbance with wide incident angle and polarization independence. The range of the resonant frequency scan is notably enlarged at a spectral ratio of as high as $\Delta {f}/{f} = {50}\% $ while ensuring absorbance beyond 90%. Such graphene/liquid crystal hybrid tuning scheme would be preferable to push the working-band limit of terahertz perfect absorbers.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal

Ruoxing Wang, Li Li, Jianlong Liu, Fei Yan, Fengjun Tian, Hao Tian, Jianzhong Zhang, and Weimin Sun
Opt. Express 25(26) 32280-32289 (2017)

Dynamically tunable multifunctional terahertz absorber based on hybrid vanadium dioxide and graphene metamaterials

Jing Zhang, Jiejun Wang, Libo Yuan, and Houquan Liu
Appl. Opt. 63(5) 1385-1393 (2024)

Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber

Lei Wang, Shijun Ge, Wei Hu, Makoto Nakajima, and Yanqing Lu
Opt. Express 25(20) 23873-23879 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved