Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Toward in-cylinder absorption tomography in a production engine

Not Accessible

Your library or personal account may give you access

Abstract

Design requirements for an 8000 frame/s dual-wavelength ratiometric chemical species tomography system, intended for hydrocarbon vapor imaging in one cylinder of a standard automobile engine, are examined. The design process is guided by spectroscopic measurements on iso-octane and by comprehensive results from laboratory phantoms and research engines, including results on temporal resolution performance. Novel image reconstruction techniques, necessary for this application, are presented. Recent progress toward implementation, including details of the optical access arrangement employed and signal-to-noise issues, is described. We present first cross-cylinder IR absorption measurements from a reduced channel-count (nontomographic) system and discuss the prospects for imaging.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
High-speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines

Michael Cundy, Torsten Schucht, Olaf Thiele, and Volker Sick
Appl. Opt. 48(4) B94-B104 (2009)

Multiwavelength diode-laser absorption spectroscopy using external intensity modulation by semiconductor optical amplifiers

Solon Karagiannopoulos, Edward Cheadle, Paul Wright, Stylianos Tsekenis, and Hugh McCann
Appl. Opt. 51(34) 8057-8067 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved