Abstract

Quantum spectroscopy in solids directly detects nonlinear changes created exclusively by quantum fluctuations of light. So far, it has been realized only by projecting a large set of measurements with a coherent-state laser to a specific quantum-light response. We present two complementary experimental approaches to realize intense and ultrafast thermal-state sources. We investigate the effects of continuous excitation from a superluminescent diode (SLD) as well as an ensemble-averaging technique using phase-modulated pulses. By measuring excitonic nonlinearities in gallium arsenide, we demonstrate that the experimentally realized thermal-state source produces significantly reduced many-body nonlinearities compared to a coherent-state excitation. We also review experimental approaches toward future realization of quantum spectroscopy with thermal states.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kira and S. W. Koch, “Quantum-optical spectroscopy of semiconductors,” Phys. Rev. A 73(1), 013813 (2006).
    [Crossref]
  2. M. Kira, S. W. Koch, R. P. Smith, A. E. Hunter, and S. T. Cundiff, “Quantum spectroscopy with schrödinger-cat states,” Nat. Phys. 7(10), 799–804 (2011).
    [Crossref]
  3. A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
    [Crossref]
  4. M. Kira and S. W. Koch, “Cluster-expansion representation in quantum optics,” Phys. Rev. A 78(2), 022102 (2008).
    [Crossref]
  5. M. Kira and S. Koch, Semiconductor Quantum Optics (Cambridge University Press, 2012).
  6. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130(6), 2529–2539 (1963).
    [Crossref]
  7. R. H. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178(4541), 1046–1048 (1956).
    [Crossref]
  8. H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977).
    [Crossref]
  9. Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
    [Crossref]
  10. B. L. Morgan and L. Mandel, “Measurement of photon bunching in a thermal light beam,” Phys. Rev. Lett. 16(22), 1012–1015 (1966).
    [Crossref]
  11. M. G. Raymer, J. Cooper, H. J. Carmichael, M. Beck, and D. T. Smithey, “Ultrafast measurement of optical-field statistics by dc-balanced homodyne detection,” J. Opt. Soc. Am. B 12(10), 1801–1812 (1995).
    [Crossref]
  12. G. Roumpos and S. T. Cundiff, “Multichannel homodyne detection for quantum optical tomography,” J. Opt. Soc. Am. B 30(5), 1303–1316 (2013).
    [Crossref]
  13. M. Fox, Quantum Optics (Oxford University Press, Oxford, 2006).
  14. S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, “Semiconductor excitons in new light,” Nat. Mater. 5(7), 523–531 (2006).
    [Crossref]
  15. R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, and S. W. Koch, “Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells,” Phys. Rev. Lett. 104(24), 247401 (2010).
    [Crossref]
  16. N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure,” Phys. Rev. Lett. 53(25), 2433–2436 (1984).
    [Crossref]
  17. H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in gaas,” Phys. Rev. Lett. 71(8), 1261–1264 (1993).
    [Crossref]
  18. Y. Z. Hu, R. Binder, S. W. Koch, S. T. Cundiff, H. Wang, and D. G. Steel, “Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy,” Phys. Rev. B 49(20), 14382–14386 (1994).
    [Crossref]
  19. S. Hunsche, K. Leo, H. Kurz, and K. Köhler, “Femtosecond intersubband relaxation in gaas quantum wells,” Phys. Rev. B 50(8), 5791–5794 (1994).
    [Crossref]
  20. D. Morris, D. Houde, B. Deveaud, and A. Regreny, “Ultrafast dynamics of intersubband relaxation in gaas quantum wells: hot carrier and phonon populations effects,” Superlattices Microstruct. 15(3), 309 (1994).
    [Crossref]
  21. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32(10), 6601–6609 (1985).
    [Crossref]
  22. F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
    [Crossref]
  23. G. Tränkle, E. Lach, M. Walther, A. Forchel, and G. Weimann, “Optical investigation of 2d mott transitions in gaas/gaalas quantum well structures,” Surf. Sci. 196(1-3), 584–589 (1988).
    [Crossref]
  24. H. Reinholz and G. Röpke, “Mott effect and screening in quantum well structures,” Contrib. Plasma Phys. 43(56), 346–349 (2003).
    [Crossref]
  25. M. Kira and S. W. Koch, “Quantum-optical spectroscopy of semiconductors,” Phys. Rev. A 73(1), 013813 (2006).
    [Crossref]
  26. M. Born, E. Wolf, A. B. Bhatia, and P. C. Clemmow, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 2000).
  27. F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
    [Crossref]
  28. P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys. 125(19), 194303 (2006).
    [Crossref]
  29. P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
    [Crossref]
  30. E. W. Martin and S. T. Cundiff, “Inducing coherent quantum dot interactions,” Phys. Rev. B 97(8), 081301 (2018).
    [Crossref]
  31. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  32. M. Orszag, Quantum Optics (Springer, Berlin, 2008).
  33. R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2003).
  34. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref]
  35. C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
    [Crossref]

2018 (1)

E. W. Martin and S. T. Cundiff, “Inducing coherent quantum dot interactions,” Phys. Rev. B 97(8), 081301 (2018).
[Crossref]

2016 (1)

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

2014 (1)

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref]

2013 (1)

2011 (2)

M. Kira, S. W. Koch, R. P. Smith, A. E. Hunter, and S. T. Cundiff, “Quantum spectroscopy with schrödinger-cat states,” Nat. Phys. 7(10), 799–804 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

2010 (2)

R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, and S. W. Koch, “Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells,” Phys. Rev. Lett. 104(24), 247401 (2010).
[Crossref]

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
[Crossref]

2009 (1)

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
[Crossref]

2008 (1)

M. Kira and S. W. Koch, “Cluster-expansion representation in quantum optics,” Phys. Rev. A 78(2), 022102 (2008).
[Crossref]

2007 (1)

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref]

2006 (4)

M. Kira and S. W. Koch, “Quantum-optical spectroscopy of semiconductors,” Phys. Rev. A 73(1), 013813 (2006).
[Crossref]

P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys. 125(19), 194303 (2006).
[Crossref]

M. Kira and S. W. Koch, “Quantum-optical spectroscopy of semiconductors,” Phys. Rev. A 73(1), 013813 (2006).
[Crossref]

S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, “Semiconductor excitons in new light,” Nat. Mater. 5(7), 523–531 (2006).
[Crossref]

2003 (1)

H. Reinholz and G. Röpke, “Mott effect and screening in quantum well structures,” Contrib. Plasma Phys. 43(56), 346–349 (2003).
[Crossref]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

1996 (1)

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

1995 (1)

1994 (3)

Y. Z. Hu, R. Binder, S. W. Koch, S. T. Cundiff, H. Wang, and D. G. Steel, “Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy,” Phys. Rev. B 49(20), 14382–14386 (1994).
[Crossref]

S. Hunsche, K. Leo, H. Kurz, and K. Köhler, “Femtosecond intersubband relaxation in gaas quantum wells,” Phys. Rev. B 50(8), 5791–5794 (1994).
[Crossref]

D. Morris, D. Houde, B. Deveaud, and A. Regreny, “Ultrafast dynamics of intersubband relaxation in gaas quantum wells: hot carrier and phonon populations effects,” Superlattices Microstruct. 15(3), 309 (1994).
[Crossref]

1993 (1)

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in gaas,” Phys. Rev. Lett. 71(8), 1261–1264 (1993).
[Crossref]

1988 (1)

G. Tränkle, E. Lach, M. Walther, A. Forchel, and G. Weimann, “Optical investigation of 2d mott transitions in gaas/gaalas quantum well structures,” Surf. Sci. 196(1-3), 584–589 (1988).
[Crossref]

1985 (1)

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32(10), 6601–6609 (1985).
[Crossref]

1984 (1)

N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure,” Phys. Rev. Lett. 53(25), 2433–2436 (1984).
[Crossref]

1977 (1)

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977).
[Crossref]

1966 (1)

B. L. Morgan and L. Mandel, “Measurement of photon bunching in a thermal light beam,” Phys. Rev. Lett. 16(22), 1012–1015 (1966).
[Crossref]

1963 (1)

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130(6), 2529–2539 (1963).
[Crossref]

1956 (1)

R. H. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178(4541), 1046–1048 (1956).
[Crossref]

Almand-Hunter, A. E.

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref]

Amand, T.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

Antonetti, A.

N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure,” Phys. Rev. Lett. 53(25), 2433–2436 (1984).
[Crossref]

Balocchi, A.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

Beck, M.

Berger, J. D.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

Bhatia, A. B.

M. Born, E. Wolf, A. B. Bhatia, and P. C. Clemmow, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 2000).

Binder, R.

Y. Z. Hu, R. Binder, S. W. Koch, S. T. Cundiff, H. Wang, and D. G. Steel, “Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy,” Phys. Rev. B 49(20), 14382–14386 (1994).
[Crossref]

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in gaas,” Phys. Rev. Lett. 71(8), 1261–1264 (1993).
[Crossref]

Boitier, F.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
[Crossref]

Born, M.

M. Born, E. Wolf, A. B. Bhatia, and P. C. Clemmow, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 2000).

Bromberg, Y.

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
[Crossref]

Brown, R. H.

R. H. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178(4541), 1046–1048 (1956).
[Crossref]

Cadiz, F.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

Carmichael, H. J.

Chemla, D. S.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32(10), 6601–6609 (1985).
[Crossref]

Clemmow, P. C.

M. Born, E. Wolf, A. B. Bhatia, and P. C. Clemmow, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 2000).

Cooper, J.

Cundiff, S. T.

E. W. Martin and S. T. Cundiff, “Inducing coherent quantum dot interactions,” Phys. Rev. B 97(8), 081301 (2018).
[Crossref]

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref]

G. Roumpos and S. T. Cundiff, “Multichannel homodyne detection for quantum optical tomography,” J. Opt. Soc. Am. B 30(5), 1303–1316 (2013).
[Crossref]

M. Kira, S. W. Koch, R. P. Smith, A. E. Hunter, and S. T. Cundiff, “Quantum spectroscopy with schrödinger-cat states,” Nat. Phys. 7(10), 799–804 (2011).
[Crossref]

R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, and S. W. Koch, “Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells,” Phys. Rev. Lett. 104(24), 247401 (2010).
[Crossref]

Y. Z. Hu, R. Binder, S. W. Koch, S. T. Cundiff, H. Wang, and D. G. Steel, “Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy,” Phys. Rev. B 49(20), 14382–14386 (1994).
[Crossref]

Dagenais, M.

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977).
[Crossref]

Deveaud, B.

D. Morris, D. Houde, B. Deveaud, and A. Regreny, “Ultrafast dynamics of intersubband relaxation in gaas quantum wells: hot carrier and phonon populations effects,” Superlattices Microstruct. 15(3), 309 (1994).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Dyke, T. R.

P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys. 125(19), 194303 (2006).
[Crossref]

Fabre, C.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
[Crossref]

Ferrio, K.

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in gaas,” Phys. Rev. Lett. 71(8), 1261–1264 (1993).
[Crossref]

Forchel, A.

G. Tränkle, E. Lach, M. Walther, A. Forchel, and G. Weimann, “Optical investigation of 2d mott transitions in gaas/gaalas quantum well structures,” Surf. Sci. 196(1-3), 584–589 (1988).
[Crossref]

Fox, M.

M. Fox, Quantum Optics (Oxford University Press, Oxford, 2006).

Funk, A. C.

R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, and S. W. Koch, “Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells,” Phys. Rev. Lett. 104(24), 247401 (2010).
[Crossref]

Gibbs, H. M.

S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, “Semiconductor excitons in new light,” Nat. Mater. 5(7), 523–531 (2006).
[Crossref]

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure,” Phys. Rev. Lett. 53(25), 2433–2436 (1984).
[Crossref]

Glauber, R. J.

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130(6), 2529–2539 (1963).
[Crossref]

Godard, A.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Houde, D.

D. Morris, D. Houde, B. Deveaud, and A. Regreny, “Ultrafast dynamics of intersubband relaxation in gaas quantum wells: hot carrier and phonon populations effects,” Superlattices Microstruct. 15(3), 309 (1994).
[Crossref]

Hu, Y. Z.

Y. Z. Hu, R. Binder, S. W. Koch, S. T. Cundiff, H. Wang, and D. G. Steel, “Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy,” Phys. Rev. B 49(20), 14382–14386 (1994).
[Crossref]

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in gaas,” Phys. Rev. Lett. 71(8), 1261–1264 (1993).
[Crossref]

Hulin, D.

N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure,” Phys. Rev. Lett. 53(25), 2433–2436 (1984).
[Crossref]

Hunsche, S.

S. Hunsche, K. Leo, H. Kurz, and K. Köhler, “Femtosecond intersubband relaxation in gaas quantum wells,” Phys. Rev. B 50(8), 5791–5794 (1994).
[Crossref]

Hunter, A. E.

M. Kira, S. W. Koch, R. P. Smith, A. E. Hunter, and S. T. Cundiff, “Quantum spectroscopy with schrödinger-cat states,” Nat. Phys. 7(10), 799–804 (2011).
[Crossref]

Jahnke, F.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

Jewell, J. L.

N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure,” Phys. Rev. Lett. 53(25), 2433–2436 (1984).
[Crossref]

Khitrova, G.

S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, “Semiconductor excitons in new light,” Nat. Mater. 5(7), 523–531 (2006).
[Crossref]

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

Kimble, H. J.

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Kira, M.

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref]

M. Kira, S. W. Koch, R. P. Smith, A. E. Hunter, and S. T. Cundiff, “Quantum spectroscopy with schrödinger-cat states,” Nat. Phys. 7(10), 799–804 (2011).
[Crossref]

R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, and S. W. Koch, “Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells,” Phys. Rev. Lett. 104(24), 247401 (2010).
[Crossref]

M. Kira and S. W. Koch, “Cluster-expansion representation in quantum optics,” Phys. Rev. A 78(2), 022102 (2008).
[Crossref]

M. Kira and S. W. Koch, “Quantum-optical spectroscopy of semiconductors,” Phys. Rev. A 73(1), 013813 (2006).
[Crossref]

S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, “Semiconductor excitons in new light,” Nat. Mater. 5(7), 523–531 (2006).
[Crossref]

M. Kira and S. W. Koch, “Quantum-optical spectroscopy of semiconductors,” Phys. Rev. A 73(1), 013813 (2006).
[Crossref]

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

M. Kira and S. Koch, Semiconductor Quantum Optics (Cambridge University Press, 2012).

Koch, S.

M. Kira and S. Koch, Semiconductor Quantum Optics (Cambridge University Press, 2012).

Koch, S. W.

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref]

M. Kira, S. W. Koch, R. P. Smith, A. E. Hunter, and S. T. Cundiff, “Quantum spectroscopy with schrödinger-cat states,” Nat. Phys. 7(10), 799–804 (2011).
[Crossref]

R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, and S. W. Koch, “Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells,” Phys. Rev. Lett. 104(24), 247401 (2010).
[Crossref]

M. Kira and S. W. Koch, “Cluster-expansion representation in quantum optics,” Phys. Rev. A 78(2), 022102 (2008).
[Crossref]

M. Kira and S. W. Koch, “Quantum-optical spectroscopy of semiconductors,” Phys. Rev. A 73(1), 013813 (2006).
[Crossref]

S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, “Semiconductor excitons in new light,” Nat. Mater. 5(7), 523–531 (2006).
[Crossref]

M. Kira and S. W. Koch, “Quantum-optical spectroscopy of semiconductors,” Phys. Rev. A 73(1), 013813 (2006).
[Crossref]

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

Y. Z. Hu, R. Binder, S. W. Koch, S. T. Cundiff, H. Wang, and D. G. Steel, “Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy,” Phys. Rev. B 49(20), 14382–14386 (1994).
[Crossref]

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in gaas,” Phys. Rev. Lett. 71(8), 1261–1264 (1993).
[Crossref]

Köhler, K.

S. Hunsche, K. Leo, H. Kurz, and K. Köhler, “Femtosecond intersubband relaxation in gaas quantum wells,” Phys. Rev. B 50(8), 5791–5794 (1994).
[Crossref]

Kurz, H.

S. Hunsche, K. Leo, H. Kurz, and K. Köhler, “Femtosecond intersubband relaxation in gaas quantum wells,” Phys. Rev. B 50(8), 5791–5794 (1994).
[Crossref]

Lach, E.

G. Tränkle, E. Lach, M. Walther, A. Forchel, and G. Weimann, “Optical investigation of 2d mott transitions in gaas/gaalas quantum well structures,” Surf. Sci. 196(1-3), 584–589 (1988).
[Crossref]

Lagarde, D.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

Lahini, Y.

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
[Crossref]

Lassagne, B.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

Leo, K.

S. Hunsche, K. Leo, H. Kurz, and K. Köhler, “Femtosecond intersubband relaxation in gaas quantum wells,” Phys. Rev. B 50(8), 5791–5794 (1994).
[Crossref]

Li, H.

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref]

Lindmark, E. K.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

Lott, G. A.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2003).

Lyngnes, O.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

Mandel, L.

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977).
[Crossref]

B. L. Morgan and L. Mandel, “Measurement of photon bunching in a thermal light beam,” Phys. Rev. Lett. 16(22), 1012–1015 (1966).
[Crossref]

Marcus, A. H.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref]

P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys. 125(19), 194303 (2006).
[Crossref]

Marie, X.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

Martin, E. W.

E. W. Martin and S. T. Cundiff, “Inducing coherent quantum dot interactions,” Phys. Rev. B 97(8), 081301 (2018).
[Crossref]

Migus, A.

N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure,” Phys. Rev. Lett. 53(25), 2433–2436 (1984).
[Crossref]

Miller, D. A. B.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32(10), 6601–6609 (1985).
[Crossref]

Mirin, R. P.

R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, and S. W. Koch, “Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells,” Phys. Rev. Lett. 104(24), 247401 (2010).
[Crossref]

Mootz, M.

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref]

Morgan, B. L.

B. L. Morgan and L. Mandel, “Measurement of photon bunching in a thermal light beam,” Phys. Rev. Lett. 16(22), 1012–1015 (1966).
[Crossref]

Morris, D.

D. Morris, D. Houde, B. Deveaud, and A. Regreny, “Ultrafast dynamics of intersubband relaxation in gaas quantum wells: hot carrier and phonon populations effects,” Superlattices Microstruct. 15(3), 309 (1994).
[Crossref]

Mysyrowicz, A.

N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure,” Phys. Rev. Lett. 53(25), 2433–2436 (1984).
[Crossref]

Nelson, T. R.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

Orszag, M.

M. Orszag, Quantum Optics (Springer, Berlin, 2008).

Peyghambarian, N.

N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure,” Phys. Rev. Lett. 53(25), 2433–2436 (1984).
[Crossref]

Raymer, M. G.

Regreny, A.

D. Morris, D. Houde, B. Deveaud, and A. Regreny, “Ultrafast dynamics of intersubband relaxation in gaas quantum wells: hot carrier and phonon populations effects,” Superlattices Microstruct. 15(3), 309 (1994).
[Crossref]

Reinholz, H.

H. Reinholz and G. Röpke, “Mott effect and screening in quantum well structures,” Contrib. Plasma Phys. 43(56), 346–349 (2003).
[Crossref]

Renucci, P.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

Robert, C.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

Röpke, G.

H. Reinholz and G. Röpke, “Mott effect and screening in quantum well structures,” Contrib. Plasma Phys. 43(56), 346–349 (2003).
[Crossref]

Rosencher, E.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
[Crossref]

Roumpos, G.

Schafer, M.

R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, and S. W. Koch, “Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells,” Phys. Rev. Lett. 104(24), 247401 (2010).
[Crossref]

Schmitt-Rink, S.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32(10), 6601–6609 (1985).
[Crossref]

Silberberg, Y.

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
[Crossref]

Small, E.

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
[Crossref]

Smith, R. P.

M. Kira, S. W. Koch, R. P. Smith, A. E. Hunter, and S. T. Cundiff, “Quantum spectroscopy with schrödinger-cat states,” Nat. Phys. 7(10), 799–804 (2011).
[Crossref]

R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, and S. W. Koch, “Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells,” Phys. Rev. Lett. 104(24), 247401 (2010).
[Crossref]

Smithey, D. T.

Steel, D. G.

Y. Z. Hu, R. Binder, S. W. Koch, S. T. Cundiff, H. Wang, and D. G. Steel, “Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy,” Phys. Rev. B 49(20), 14382–14386 (1994).
[Crossref]

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in gaas,” Phys. Rev. Lett. 71(8), 1261–1264 (1993).
[Crossref]

Steiner, J. T.

R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, and S. W. Koch, “Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells,” Phys. Rev. Lett. 104(24), 247401 (2010).
[Crossref]

Tai, K.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

Tekavec, P. F.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref]

P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys. 125(19), 194303 (2006).
[Crossref]

Tongay, S.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

Tränkle, G.

G. Tränkle, E. Lach, M. Walther, A. Forchel, and G. Weimann, “Optical investigation of 2d mott transitions in gaas/gaalas quantum well structures,” Surf. Sci. 196(1-3), 584–589 (1988).
[Crossref]

Twiss, R. Q.

R. H. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178(4541), 1046–1048 (1956).
[Crossref]

Urbaszek, B.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

Wahlstrand, J. K.

R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, and S. W. Koch, “Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells,” Phys. Rev. Lett. 104(24), 247401 (2010).
[Crossref]

Walther, M.

G. Tränkle, E. Lach, M. Walther, A. Forchel, and G. Weimann, “Optical investigation of 2d mott transitions in gaas/gaalas quantum well structures,” Surf. Sci. 196(1-3), 584–589 (1988).
[Crossref]

Wang, G.

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

Wang, H.

Y. Z. Hu, R. Binder, S. W. Koch, S. T. Cundiff, H. Wang, and D. G. Steel, “Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy,” Phys. Rev. B 49(20), 14382–14386 (1994).
[Crossref]

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in gaas,” Phys. Rev. Lett. 71(8), 1261–1264 (1993).
[Crossref]

Weimann, G.

G. Tränkle, E. Lach, M. Walther, A. Forchel, and G. Weimann, “Optical investigation of 2d mott transitions in gaas/gaalas quantum well structures,” Surf. Sci. 196(1-3), 584–589 (1988).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Wick, D. V.

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

Wolf, E.

M. Born, E. Wolf, A. B. Bhatia, and P. C. Clemmow, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 2000).

Contrib. Plasma Phys. (1)

H. Reinholz and G. Röpke, “Mott effect and screening in quantum well structures,” Contrib. Plasma Phys. 43(56), 346–349 (2003).
[Crossref]

J. Chem. Phys. (2)

P. F. Tekavec, T. R. Dyke, and A. H. Marcus, “Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation,” J. Chem. Phys. 125(19), 194303 (2006).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Mater. (1)

S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs, “Semiconductor excitons in new light,” Nat. Mater. 5(7), 523–531 (2006).
[Crossref]

Nat. Photonics (1)

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
[Crossref]

Nat. Phys. (2)

M. Kira, S. W. Koch, R. P. Smith, A. E. Hunter, and S. T. Cundiff, “Quantum spectroscopy with schrödinger-cat states,” Nat. Phys. 7(10), 799–804 (2011).
[Crossref]

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
[Crossref]

Nature (2)

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira, and S. W. Koch, “Quantum droplets of electrons and holes,” Nature 506(7489), 471–475 (2014).
[Crossref]

R. H. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178(4541), 1046–1048 (1956).
[Crossref]

Phys. Rev. (1)

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130(6), 2529–2539 (1963).
[Crossref]

Phys. Rev. A (3)

M. Kira and S. W. Koch, “Quantum-optical spectroscopy of semiconductors,” Phys. Rev. A 73(1), 013813 (2006).
[Crossref]

M. Kira and S. W. Koch, “Cluster-expansion representation in quantum optics,” Phys. Rev. A 78(2), 022102 (2008).
[Crossref]

M. Kira and S. W. Koch, “Quantum-optical spectroscopy of semiconductors,” Phys. Rev. A 73(1), 013813 (2006).
[Crossref]

Phys. Rev. B (5)

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32(10), 6601–6609 (1985).
[Crossref]

E. W. Martin and S. T. Cundiff, “Inducing coherent quantum dot interactions,” Phys. Rev. B 97(8), 081301 (2018).
[Crossref]

C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, “Exciton radiative lifetime in transition metal dichalcogenide monolayers,” Phys. Rev. B 93(20), 205423 (2016).
[Crossref]

Y. Z. Hu, R. Binder, S. W. Koch, S. T. Cundiff, H. Wang, and D. G. Steel, “Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy,” Phys. Rev. B 49(20), 14382–14386 (1994).
[Crossref]

S. Hunsche, K. Leo, H. Kurz, and K. Köhler, “Femtosecond intersubband relaxation in gaas quantum wells,” Phys. Rev. B 50(8), 5791–5794 (1994).
[Crossref]

Phys. Rev. Lett. (6)

B. L. Morgan and L. Mandel, “Measurement of photon bunching in a thermal light beam,” Phys. Rev. Lett. 16(22), 1012–1015 (1966).
[Crossref]

R. P. Smith, J. K. Wahlstrand, A. C. Funk, R. P. Mirin, S. T. Cundiff, J. T. Steiner, M. Schafer, M. Kira, and S. W. Koch, “Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells,” Phys. Rev. Lett. 104(24), 247401 (2010).
[Crossref]

N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure,” Phys. Rev. Lett. 53(25), 2433–2436 (1984).
[Crossref]

H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in gaas,” Phys. Rev. Lett. 71(8), 1261–1264 (1993).
[Crossref]

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977).
[Crossref]

F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, and T. R. Nelson, Jr.,D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77(26), 5257–5260 (1996).
[Crossref]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Superlattices Microstruct. (1)

D. Morris, D. Houde, B. Deveaud, and A. Regreny, “Ultrafast dynamics of intersubband relaxation in gaas quantum wells: hot carrier and phonon populations effects,” Superlattices Microstruct. 15(3), 309 (1994).
[Crossref]

Surf. Sci. (1)

G. Tränkle, E. Lach, M. Walther, A. Forchel, and G. Weimann, “Optical investigation of 2d mott transitions in gaas/gaalas quantum well structures,” Surf. Sci. 196(1-3), 584–589 (1988).
[Crossref]

Other (5)

M. Born, E. Wolf, A. B. Bhatia, and P. C. Clemmow, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 2000).

M. Orszag, Quantum Optics (Springer, Berlin, 2008).

R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2003).

M. Fox, Quantum Optics (Oxford University Press, Oxford, 2006).

M. Kira and S. Koch, Semiconductor Quantum Optics (Cambridge University Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Comparison of photon number probability distributions for coherent and thermal light sources, both with $\bar {n} = 10$ .
Fig. 2.
Fig. 2. (a) Probe transmission spectrum through the GaAs sample (gray shaded region) along with the thermal excitation (red region) and the coherent excitation source (blue region). The absorption dip at 1547 meV corresponds to the 1s exciton of GaAs. (b) Nonlinear signal is generated by amplitude modulated pump beam and frequency shifted probe beam. Amplitude modulation can be performed with a mechanical chopper and frequency shifting is performed with acousto-optic modulators (AOMs). A local oscillator (LO) beam, which is frequency shifted by a different frequency than the probe beam, interferes with the signal on a detector. Since the modulation on the detector corresponding to the interference between the differential absorption signal of interest and the LO is unique, we can isolate the signal with a lock-in detector tuned to that modulation frequency.
Fig. 3.
Fig. 3. Real part of spectrally resolved nonlinear signal. Here we compare nonlinear signals resulting from thermal (red) and coherent (blue) excitation. We show minimal difference in the induced signal for both low (left) and high (right) temperatures.
Fig. 4.
Fig. 4. Time-integrated nonlinear response as a function of pump power for a thermal excitation source (red and maroon represent two separate measurements) and a coherent excitation source (blue). These are also compared to a projected thermal response (black line) calculated using the measured coherent response. These measurements are shown for low temperature (left) and high temperature (right).
Fig. 5.
Fig. 5. (a) A spectrum from a mode-locked ti:sapphire laser with a random spectral phase function with spectral bin sizes of $\Delta \omega _\textrm {bin} =200 \,\mu$ eV. There are $N_\textrm {bins}=30$ spectral bins across this spectrum. (b) Cross-correlation traces for six different scrambled realizations. All traces are normalized so that the area is unity. For comparison, the normalized transform-limited pulse (flat spectral phase mask) is shown as a dashed red line.
Fig. 6.
Fig. 6. (a) Probability distribution function for the normalized cross-correlation values, where the single bin $P_\textrm {n}$ (10 photons) = 1. (b) $k^\textrm {th}$ -order coherence values calculated by Eq. (32).
Fig. 7.
Fig. 7. (a) Measured second-order coherence function values for several different spectral bin widths. Measured values correspond to the trend predicted in Eq. (31). (b) The average scrambled pump spectrum (shown for $N_\textrm {ens}=1,14,50$ ) converges to the flat mask spectrum as the number of realizations $N_\textrm {ens}$ is increased.
Fig. 8.
Fig. 8. Nonlinear observables as a function of power. (a) Peak heights of $\beta _\textrm {QW}$ and (b) center resonance positions are shown for varying $P_\textrm {QW}^\textrm {pump}$ . Fits (solid lines) through each set of points clarify the trends for the observables.
Fig. 9.
Fig. 9. (a) The average spectral response from the scrambled realizations reveals the HH $1s$ -resonance as less saturated than from coherent excitation with the same $P_\textrm {IN}^\textrm {pump}$ . (b) Similarly, the projected thermal response determined from applying a set of coherent data using Eq. (18) also reveals less saturation compared with coherent excitation for the same pump excitation density ( $4.1\times 10^9$ electron-hole pairs / cm $^2$ /layer).

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

E ^ ( r , t ) = E ^ + ( r , t ) + E ^ ( r , t ) , with E ^ + ( r , t ) q i E q u q ( r ) B q , E ^ ( r , t ) [ E ^ + ( r , t ) ] , E q ω q 2 ϵ 0 ,
[ B q , B q ] = δ q , q , [ B q , B q ] = 0 = [ B q , B q ] ,
E ^ ( t ) = i E [ B ( t ) B ( t ) ] ,
g ( 1 ) ( τ ) E ^ ( ) ( t ) E ^ ( + ) ( t τ ) I ( t ) I ( t τ ) = B ( t ) B ( t τ ) n ( t ) n ( t τ ) ,
g ( 2 ) ( τ ) E ^ ( ) ( t ) E ^ ( ) ( t ) E ^ ( + ) ( t τ ) E ^ ( + ) ( t τ ) I ( t ) I ( t τ ) = B ( t ) B ( t ) B ( t τ ) B ( t τ ) n ( t ) n ( t τ ) ,
B | β = β | β ,
H q ^ | n = ω ( n + 1 2 ) | n , n = 0 , 1 , 2 , ,
| β = e | β | 2 / 2 n = 0 β n n ! | n ,
ρ ^ thermal = n = 0 P n | n n | , with P n = 1 1 + n ¯ ( n ¯ 1 + n ¯ ) n .
ρ ^ thermal = d 2 β 1 π n ¯ e | β | 2 n ¯ | β β | .
R thermal = d 2 β 1 π n ¯ e | β | 2 n ¯ R ( β ) .
P n coherent = e n ¯ n ¯ n n ! ,
[ B ] J B J coherent = B B J = B J B J
[ B ] J B J thermal = J ! B B J
Δ n 2 ( n ^ n ^ ) 2 = n ^ 2 n ^ 2 = B B B B + B B B B 2 .
I ( ν , T ) = 2 h ν 3 c 2 n ¯ ( h ν ) , n ¯ ( h ν ) 1 e h ν / k B T 1 ,
E pump ( t ) = E pump, no mod. sgn(sin ( ω pump t ) ) e i ( ω light ) t E probe ( t ) = | E probe | e i ( ω laser + ω probe ) t E LO ( t ) = | E LO | e i ( ω laser + ω LO ) t ,
R th ( I th ) = 0 d I coh e I coh / I th R coh ( I coh ) 0 d I coh e I coh / I th ,
q = d q q P ( q ) = Lim N 1 N j = 1 N q j meas | ide ,
q 1 N ens r = 1 N ens q r ens ,
q = d q q 1 N ens r = 1 N ens P r ens ( q ) ,
P eff ( q ) lim N ens 1 N ens r = 1 N ens P r ens ( q ) ,
ρ ^ eff lim N ens 1 N ens r = 1 N ens ρ ^ r ens ,
ρ ^ eff = ρ ^ eff , Tr [ ρ ^ eff ] = 1 , ρ ^ eff is positively valued .
S ( ω ) = 1 N ens r = 1 N ens S r ( ω ) ,
E ( ω ) = j = 1 N bins E j 0 ( ω ) e i Δ ϕ j ( r ) ,
B ^ ( r ) = j = 1 N bins e i Δ ϕ j ( r ) B ^ j ,
B ^ j | β j = β j | β j .
B ^ = j = 1 N bins e i Δ ϕ j ( r ) B ^ j = j e i Δ ϕ j β j = 0 ,
B ^ B ^ = j , k e i [ Δ ϕ k Δ ϕ j ] β j β k = j | β j | 2 ,
[ B L ] J [ B L ] K = δ J , K J ! B L B L J [ 1 + O ( N bin 1 ) ] , when N bin J .
g ( k ) = : n ^ k : / n ^ k = 1 n ^ k m = k m ! ( m k ) ! P m ,

Metrics