Abstract

Femtosecond 3D printing has emerged as an important technology for manufacturing nano- and microscopic optical devices and elements. Detailed knowledge of the dispersion in the visible and near-infrared spectral range is crucial for the design of these optical elements. Here we provide refractive index measurements for different UV-doses, aging times, heat treatment and 2-photon exposed structures for the photoresists IP-S, IP-Dip, IP-L, OrmoComp, IP-Visio, and PO4. We use a modified and automized Pulfrich refractometer setup, utilizing critical angles of total internal reflection with an accuracy of 5·10−4 in the visible and near-infrared spectral range. We compare Cauchy and Sellmeier fits to the dispersion curves. We also give Abbe numbers and Schott Catalog numbers of the almost entirely polymerized resists. Additionally, we provide quantitative extinction and luminescence measurements for all photoresists.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index measurements of photo-resists for three-dimensional direct laser writing

Timo Gissibl, Sebastian Wagner, Jachym Sykora, Michael Schmid, and Harald Giessen
Opt. Mater. Express 7(7) 2293-2298 (2017)

UV to NIR optical properties of IP-Dip, IP-L, and IP-S after two-photon polymerization determined by spectroscopic ellipsometry

Y. Li, S. Park, M. McLamb, M. Lata, S. Schöche, D. Childers, I. D. Aggarwal, M. K. Poutous, G. Boreman, and T. Hofmann
Opt. Mater. Express 9(11) 4318-4328 (2019)

Temperature calculation in metal substrates during two-photon polymerization

Emely Marie Harnisch, Tommy Venek, Svenja Nohr, Niels König, and Robert Schmitt
Opt. Mater. Express 9(1) 269-284 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Schmid, S. Thiele, A. Herkommer, and H. Giessen, “Three-dimensional direct laser written achromatic axicons and multi-component microlenses,” Opt. Lett. 43(23), 5837 (2018).
    [Crossref]
  2. F. Mayer, S. Richter, P. Hübner, T. Jabbour, and M. Wegener, “3D Fluorescence-Based Security Features by 3D Laser Lithography,” Adv. Mater. Technol. 2(11), 1700212 (2017).
    [Crossref]
  3. M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing,” Opt. Lett. 31(6), 805 (2006).
    [Crossref]
  4. C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-Optics Fabrication on Top of Optical Fibers Using Two-Photon Lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
    [Crossref]
  5. M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22(10), 12545 (2014).
    [Crossref]
  6. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667 (2012).
    [Crossref]
  7. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
    [Crossref]
  8. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
    [Crossref]
  9. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
    [Crossref]
  10. S. Thiele, T. Gissibl, H. Giessen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” Opt. Lett. 41(13), 3029 (2016).
    [Crossref]
  11. T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448 (2016).
    [Crossref]
  12. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
    [Crossref]
  13. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
    [Crossref]
  14. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [Crossref]
  15. M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
    [Crossref]
  16. J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
    [Crossref]
  17. D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
    [Crossref]
  18. P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
    [Crossref]
  19. R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14(2), 810 (2006).
    [Crossref]
  20. S. Dottermusch, D. Busko, M. Langenhorst, U. W. Paetzold, and B. S. Richards, “Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers,” Opt. Lett. 44(1), 29 (2019).
    [Crossref]
  21. T. Gissibl, S. Wagner, J. Sykora, M. Schmid, and H. Giessen, “Refractive index measurements of photo-resists for three-dimensional direct laser writing,” Opt. Mater. Express 7(7), 2293 (2017).
    [Crossref]
  22. J. Rys, S. Steenhusen, C. Schumacher, C. Cronauer, and C. Daraio, “Locally addressable material properties in 3D micro-architectures,” Extrem. Mech. Lett. 28, 31–36 (2019).
    [Crossref]

2019 (2)

S. Dottermusch, D. Busko, M. Langenhorst, U. W. Paetzold, and B. S. Richards, “Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers,” Opt. Lett. 44(1), 29 (2019).
[Crossref]

J. Rys, S. Steenhusen, C. Schumacher, C. Cronauer, and C. Daraio, “Locally addressable material properties in 3D micro-architectures,” Extrem. Mech. Lett. 28, 31–36 (2019).
[Crossref]

2018 (2)

M. Schmid, S. Thiele, A. Herkommer, and H. Giessen, “Three-dimensional direct laser written achromatic axicons and multi-component microlenses,” Opt. Lett. 43(23), 5837 (2018).
[Crossref]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

2017 (3)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

F. Mayer, S. Richter, P. Hübner, T. Jabbour, and M. Wegener, “3D Fluorescence-Based Security Features by 3D Laser Lithography,” Adv. Mater. Technol. 2(11), 1700212 (2017).
[Crossref]

T. Gissibl, S. Wagner, J. Sykora, M. Schmid, and H. Giessen, “Refractive index measurements of photo-resists for three-dimensional direct laser writing,” Opt. Mater. Express 7(7), 2293 (2017).
[Crossref]

2016 (4)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

S. Thiele, T. Gissibl, H. Giessen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” Opt. Lett. 41(13), 3029 (2016).
[Crossref]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448 (2016).
[Crossref]

2015 (1)

J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

2014 (1)

2012 (1)

2010 (4)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-Optics Fabrication on Top of Optical Fibers Using Two-Photon Lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

2006 (3)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14(2), 810 (2006).
[Crossref]

M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing,” Opt. Lett. 31(6), 805 (2006).
[Crossref]

2004 (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Arzenbacher, K.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

Balthasar, G.

Belazaras, K.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Billah, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Blaicher, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Busko, D.

Caer, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Candeloro, P.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-Optics Fabrication on Top of Optical Fibers Using Two-Photon Lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

Chen, Q.-D.

J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Cojoc, G.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-Optics Fabrication on Top of Optical Fibers Using Two-Photon Lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

Cronauer, C.

J. Rys, S. Steenhusen, C. Schumacher, C. Cronauer, and C. Daraio, “Locally addressable material properties in 3D micro-architectures,” Extrem. Mech. Lett. 28, 31–36 (2019).
[Crossref]

Dangel, R.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Daraio, C.

J. Rys, S. Steenhusen, C. Schumacher, C. Cronauer, and C. Daraio, “Locally addressable material properties in 3D micro-architectures,” Extrem. Mech. Lett. 28, 31–36 (2019).
[Crossref]

Das, G.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-Optics Fabrication on Top of Optical Fibers Using Two-Photon Lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

De Angelis, F.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-Optics Fabrication on Top of Optical Fibers Using Two-Photon Lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

Deubel, M.

M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing,” Opt. Lett. 31(6), 805 (2006).
[Crossref]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Di Fabrizio, E.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-Optics Fabrication on Top of Optical Fibers Using Two-Photon Lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

Dietrich, P.-I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Dottermusch, S.

Duan, J.-A.

J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Fang, H.-H.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Farsari, M.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Freude, W.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667 (2012).
[Crossref]

Gadonas, R.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gaidukeviciute, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gentile, F.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-Optics Fabrication on Top of Optical Fibers Using Two-Photon Lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

Giessen, H.

Gilbergs, H.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gissibl, T.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

T. Gissibl, S. Wagner, J. Sykora, M. Schmid, and H. Giessen, “Refractive index measurements of photo-resists for three-dimensional direct laser writing,” Opt. Mater. Express 7(7), 2293 (2017).
[Crossref]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448 (2016).
[Crossref]

S. Thiele, T. Gissibl, H. Giessen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” Opt. Lett. 41(13), 3029 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Guan, K.-M.

J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Guo, R.

Haberko, J.

Herkommer, A.

M. Schmid, S. Thiele, A. Herkommer, and H. Giessen, “Three-dimensional direct laser written achromatic axicons and multi-component microlenses,” Opt. Lett. 43(23), 5837 (2018).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
[Crossref]

Herkommer, A. M.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

S. Thiele, T. Gissibl, H. Giessen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” Opt. Lett. 41(13), 3029 (2016).
[Crossref]

Hillerkuss, D.

Hofmann, A.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hoose, T.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Huang, W.

Hübner, P.

F. Mayer, S. Richter, P. Hübner, T. Jabbour, and M. Wegener, “3D Fluorescence-Based Security Features by 3D Laser Lithography,” Adv. Mater. Technol. 2(11), 1700212 (2017).
[Crossref]

Jabbour, T.

F. Mayer, S. Richter, P. Hübner, T. Jabbour, and M. Wegener, “3D Fluorescence-Based Security Features by 3D Laser Lithography,” Adv. Mater. Technol. 2(11), 1700212 (2017).
[Crossref]

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing,” Opt. Lett. 31(6), 805 (2006).
[Crossref]

Jordan, M.

Juodkazis, S.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Koos, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667 (2012).
[Crossref]

Kowalczyk, M.

Langenhorst, M.

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Leuthold, J.

Li, J.

Liberale, C.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-Optics Fabrication on Top of Optical Fibers Using Two-Photon Lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

Linden, S.

Lindenmann, N.

Malinauskas, M.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Mayer, F.

F. Mayer, S. Richter, P. Hübner, T. Jabbour, and M. Wegener, “3D Fluorescence-Based Security Features by 3D Laser Lithography,” Adv. Mater. Technol. 2(11), 1700212 (2017).
[Crossref]

Moehrle, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Momot, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Niu, L.-G.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Offrein, B.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Ozin, G. A.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Paetzold, U. W.

Paipulas, D.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Piskarskas, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Purlys, V.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Reuter, I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Richards, B. S.

Richter, S.

F. Mayer, S. Richter, P. Hübner, T. Jabbour, and M. Wegener, “3D Fluorescence-Based Security Features by 3D Laser Lithography,” Adv. Mater. Technol. 2(11), 1700212 (2017).
[Crossref]

Rys, J.

J. Rys, S. Steenhusen, C. Schumacher, C. Cronauer, and C. Daraio, “Locally addressable material properties in 3D micro-architectures,” Extrem. Mech. Lett. 28, 31–36 (2019).
[Crossref]

Sakellari, I.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Schmid, M.

Schmogrow, R.

Schumacher, C.

J. Rys, S. Steenhusen, C. Schumacher, C. Cronauer, and C. Daraio, “Locally addressable material properties in 3D micro-architectures,” Extrem. Mech. Lett. 28, 31–36 (2019).
[Crossref]

Song, J.-F.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Steenhusen, S.

J. Rys, S. Steenhusen, C. Schumacher, C. Cronauer, and C. Daraio, “Locally addressable material properties in 3D micro-architectures,” Extrem. Mech. Lett. 28, 31–36 (2019).
[Crossref]

Sun, H.-B.

J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Sykora, J.

Thiel, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Thiele, S.

M. Schmid, S. Thiele, A. Herkommer, and H. Giessen, “Three-dimensional direct laser written achromatic axicons and multi-component microlenses,” Opt. Lett. 43(23), 5837 (2018).
[Crossref]

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

S. Thiele, T. Gissibl, H. Giessen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” Opt. Lett. 41(13), 3029 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Tian, Z.-N.

J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Troppenz, U.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

von Freymann, G.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing,” Opt. Lett. 31(6), 805 (2006).
[Crossref]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Wagner, S.

Wang, L.

J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Wang, R.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Wasylczyk, P.

Wegener, M.

F. Mayer, S. Richter, P. Hübner, T. Jabbour, and M. Wegener, “3D Fluorescence-Based Security Features by 3D Laser Lithography,” Adv. Mater. Technol. 2(11), 1700212 (2017).
[Crossref]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing,” Opt. Lett. 31(6), 805 (2006).
[Crossref]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Wu, D.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Wu, S.-Z.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Xia, A.

Xiao, S.

Xu, J.-J.

J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Xu, Y.

J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Yao, W.-G.

J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Zhai, X.

Žukauskas, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Adv. Funct. Mater. (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Adv. Mater. (1)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Adv. Mater. Technol. (1)

F. Mayer, S. Richter, P. Hübner, T. Jabbour, and M. Wegener, “3D Fluorescence-Based Security Features by 3D Laser Lithography,” Adv. Mater. Technol. 2(11), 1700212 (2017).
[Crossref]

Appl. Phys. Lett. (1)

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Extrem. Mech. Lett. (1)

J. Rys, S. Steenhusen, C. Schumacher, C. Cronauer, and C. Daraio, “Locally addressable material properties in 3D micro-architectures,” Extrem. Mech. Lett. 28, 31–36 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-Optics Fabrication on Top of Optical Fibers Using Two-Photon Lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

J. Opt. (1)

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Nat. Commun. (1)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
[Crossref]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Nat. Photonics (2)

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (1)

Sci. Adv. (1)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Modified and automized Pulfrich refractometer setup. The light source is a white light laser and an additional laser diode; the angle of incidence is controlled using a mirror on a rotation mount. Measurements are taken at room temperature.
Fig. 2.
Fig. 2. Refractive index of the photoresists IP-S, IP-Dip, IP-L, and OrmoComp depending on the UV dose. For all photoresists the refractive index rises with longer UV curing times over the entire wavelength range (a). Closer investigation shows a saturation behavior of the refractive index depending on the UV dose (b). However, the saturation times vary; OrmoComp reaches saturation within several seconds, whereas the refractive indices of the other photoresists saturate after more than 30 minutes.
Fig. 3.
Fig. 3. Refractive index plotted for different aging times. Due to post polymerization the refractive index rises up to several days after the initial illumination. However, the change in the refractive index finally becomes very small.
Fig. 4.
Fig. 4. Refractive indices after 5 minutes of UV curing before and after 1 hour heat treatment at 60 °C. The refractive indices of all photoresists significantly rise during the heat treatment and reach the same level as they have shown in Fig. 3 after 15 minutes UV treatment and additional post polymerization.
Fig. 5.
Fig. 5. The refractive index of 2-photon polymerized samples and 15 min UV 1 hour at  60 °C post baked samples in comparison with Sellmeier fits. The 2-photon polymerized samples of IP-S (Laser power: 70% Scan speed: 50000 µm/s Slicing: 2 µm Hatching: 0.8 µm) and OrmoComp (Laser power: 100% Scan speed: 20000 µm/s Slicing: 2 µm Hatching: 0.8 µm) show the same higher refractive index as the post baked samples except for the high-resolution resist IP-Dip (Laser power: 100% Scan speed: 40000 µm/s Slicing: 2 µm Hatching: 0.8 µm). In this case the used slicing and hatching did not provide enough intensity to almost entirely cure the photoresist which results in a much lower refractive index.
Fig. 6.
Fig. 6. Dispersion of the photoresists IP-S, IP-Dip, IP-L, OrmoComp, IP-Visio, and PO4 in the almost entirely polymerized state. The samples have been UV cured for 15 minutes and afterwards post baked at 60 °C for 1 hour. Further UV illumination, aging or heat treatment did only have minor effect on the refractive indices.
Fig. 7.
Fig. 7. Abbe diagram of the almost entirely polymerized photoresists. IP-S, IP-L, OrmoComp, and IP-Visio all have similar refractive indices nd between about 1.51 and 1.52 with high Abbe numbers between 47 and 51. IP-Dip has a higher refractive index nd above 1.55 and an Abbe number of 36 and PO4 has the highest refractive index nd above 1.62 and an Abbe number of 25 indicating much stronger dispersion.
Fig. 8.
Fig. 8. Extinction of the photoresists IP-S, IP-Dip, IP-L, OrmoComp, IP-Visio, and PO4 in the liquid, UV treated and almost entirely polymerized state after heat treatment. The samples have been UV cured for 15 minutes and afterwards post baked at 60 °C for 1 hour.
Fig. 9.
Fig. 9. Extinction of the photoresists IP-S, IP-Dip, IP-L, OrmoComp, IP-Visio, and PO4 in the liquid state and after UV curing and heat treatment. The samples have been UV cured for 15 minutes and afterwards post baked at 60 °C for 1 hour. The extinction consistently increases from the liquid to the polymerized state for all photoresists.
Fig. 10.
Fig. 10. Luminescence of the photoresists IP-S, IP-Dip, IP-L, OrmoComp, IP-Visio, and PO4 in the liquid, UV treated and almost entirely polymerized state after heat treatment. The samples have been UV cured for 15 minutes and afterwards post baked at 60 °C for 1 hour.
Fig. 11.
Fig. 11. Luminescence of the photoresists IP-S, IP-Dip, IP-L, OrmoComp, IP-Visio, and PO4 after UV curing and heat treatment upon comparable excitation and data acquisition conditions. The samples have been UV cured for 15 minutes and afterwards post baked at 60 °C for 1 hour. OrmoComp shows by far the lowest luminescence, followed by IP-Visio, PO4 and IP-S. IP-L and IP-Dip show very similar results with the highest luminescence among the photoresists at around 500 nm.

Tables (4)

Tables Icon

Table 1. Cauchy parameters for the photoresists IP-S, IP-Dip, IP-L, OrmoComp, IP-Visio, and PO4. We obtain the values by fitting the corresponding equation to the measured refractive index data.

Tables Icon

Table 2. Sellmeier parameters for the photoresists IP-S, IP-Dip, IP-L, OrmoComp, IP-Visio, and PO4. We obtain the values by fitting the corresponding equation to the measured refractive index data.

Tables Icon

Table 3. Measured refractive indices of almost entirely polymerized photoresists (15 min UV, 1 hour at 60 °C post baking).

Tables Icon

Table 4. Measured refractive indices of almost entirely polymerized photoresists (15 min UV, 1 hour at 60 °C post baking). The corresponding Abbe numbers and Schott catalog numbers are given in the last two columns.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ ( α ) = 60 + arcsin [ n n 2 sin ( arctan ( f 1 f 2 tan ( 2 α ) ) ) ] 60 + n n 2 f 1 f 2 2 α for small rotation angles α ,
R s = | n 1 cos θ n 2 2 n 1 2 sin 2 θ n 1 cos θ + n 2 2 n 1 2 sin 2 θ | 2
n ( λ ) = A + B λ 2 + C λ 4 ,
n ( λ ) 2 = 1 + B 1 λ 2 λ 2 C 1 + B 2 λ 2 λ 2 C 2 + B 3 λ 2 λ 2 C 3 .

Metrics