Abstract

We present a systematic study of micro-trench resonators for heterogeneous integration with silicon waveguides. We experimentally and numerically demonstrate that the approach is compatible with a large variety of thin film materials and that it does not require specific etching recipe development, thus making it virtually universal. The microresonators are fabricated through in-foundry silicon-on-insulator processing and in-house backend processing. We also report ultra-compact chalcogenide microresonators with radius as small as 5µ and quality factors up to 1.8 × 105. We finally show a proof-of-concept of a novel multilayer waveguide using the micro-trench technique.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
Templated dewetting for self-assembled ultra-low-loss chalcogenide integrated photonics

Philippe Jean, Alexandre Douaud, Sophie LaRochelle, Younès Messaddeq, and Wei Shi
Opt. Mater. Express 11(11) 3717-3735 (2021)

High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon

Zhan Su, Nanxi Li, Henry C. Frankis, E. Salih Magden, Thomas N. Adam, Gerald Leake, Douglas Coolbaugh, Jonathan D. B. Bradley, and Michael R. Watts
Opt. Express 26(9) 11161-11170 (2018)

Sulfur-rich chalcogenide claddings for athermal and high-Q silicon microring resonators

Philippe Jean, Alexandre Douaud, Tristan Thibault, Sophie LaRochelle, Younès Messaddeq, and Wei Shi
Opt. Mater. Express 11(3) 913-925 (2021)

References

  • View by:

  1. S. Chung, H. Abediasl, and H. Hashemi, “15.4 a 1024-element scalable optical phased array in 0.18µm SOI CMOS,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (2017), pp. 262–263).
  2. M. Zhang, C. Wang, P. Kharel, D. Zhu, and M. Lončar, “Integrated lithium niobate electro-optic modulators: when performance meets scalability,” Optica 8(5), 652–667 (2021).
    [Crossref]
  3. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  4. W. Shi, Y. Tian, and A. Gervais, “Scaling capacity of fiber-optic transmission systems via silicon photonics,” Nanophotonics 9(16), 4629–4663 (2020).
    [Crossref]
  5. L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
    [Crossref]
  6. P. Jean, A. Douaud, V. Michaud-Belleau, S. H. Messaddeq, J. Genest, S. LaRochelle, Y. Messaddeq, and W. Shi, “Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides,” Opt. Lett. 45(10), 2830–2833 (2020).
    [Crossref]
  7. H. C. Frankis, D. B. Bonneville, and J. D. B. Bradley, “Tellurite glass microcavity resonators integrated on a silicon photonics platform,” J. Opt. Microsystems 1(02), 1–12 (2021).
    [Crossref]
  8. M. Xin, N. Li, N. Singh, A. Ruocco, Z. Su, E. S. Magden, J. Notaros, D. Vermeulen, E. P. Ippen, M. R. Watts, and F. X. Kärtner, “Optical frequency synthesizer with an integrated erbium tunable laser,” Light: Sci. Appl. 8(1), 122 (2019).
    [Crossref]
  9. J. D. B. Bradley and E. S. Hosseini, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
    [Crossref]
  10. Z. Su, N. Li, E. S. Magden, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
    [Crossref]
  11. H. C. Frankis, D. Su, D. B. Bonneville, and J. D. B. Bradley, “A tellurium oxide microcavity resonator sensor integrated on-chip with a silicon waveguide,” Sensors 18(11), 4061 (2018).
    [Crossref]
  12. P. Jean, A. Douaud, S. T. Bah, S. LaRochelle, Y. Messaddeq, and W. Shi, “Silicon-coupled tantalum pentoxide microresonators with broadband low thermo-optic coefficient,” Opt. Lett. 46(15), 3813–3816 (2021).
    [Crossref]
  13. Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-q-factor al2o3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161–11170 (2018).
    [Crossref]
  14. P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, and W. Shi, “Hybrid integration of high-q chalcogenide microring resonators on silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2020), p. STh3O.3.
  15. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  16. Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in ge-as-se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
    [Crossref]
  17. I. Shpak, I. Rosola, and O. I. Shepak, “Temperature dependence of the refractive index of glassy alloys of the AsxS100–x System,” J. Appl. Spectrosc. 84(1), 140–143 (2017).
    [Crossref]
  18. H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Tantala kerr nonlinear integrated photonics,” Optica 8(6), 811–817 (2021).
    [Crossref]
  19. A. Z. Subramanian, G. S. Murugan, M. N. Zervas, and J. S. Wilkinson, “Spectroscopy, modeling, and performance of erbium-doped ta2o5 waveguide amplifiers,” J. Lightwave Technol. 30(10), 1455–1462 (2012).
    [Crossref]
  20. A. Douaud, S. H. Messaddeq, and Y. Messaddeq, “Microstructure formation in chalcogenide thin films assisted by thermal dewetting,” J. Mater. Sci.: Mater. Electron. 28(10), 6989–6999 (2017).
    [Crossref]
  21. Y. N. Colmenares, S. H. Messaddeq, and Y. Messaddeq, “Studying the kinetics of microstructure formation through dewetting of As-Se thin films,” Phys. Rev. Mater. 5(1), 015605 (2021).
    [Crossref]
  22. J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
    [Crossref]
  23. P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, and W. Shi, “Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding,” Opt. Express 29(13), 20851–20862 (2021).
    [Crossref]
  24. C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the ge–sb–te–s–o system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
    [Crossref]
  25. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3(1), 20–25 (2016).
    [Crossref]
  26. J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-cmos-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
    [Crossref]
  27. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
    [Crossref]
  28. W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  29. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
    [Crossref]
  30. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37(20), 4236–4238 (2012).
    [Crossref]
  31. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
    [Crossref]
  32. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
    [Crossref]
  33. J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” Nat. Commun. 12(1), 2236 (2021).
    [Crossref]
  34. L. W. Luo, G. S. Wiederhecker, J. Cardenas, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19(7), 6284 (2011).
    [Crossref]
  35. M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
    [Crossref]
  36. A. Yariv and P. Yeh, Photonics (Oxford University Press, 2006).
  37. M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
    [Crossref]
  38. Y. N. Colmenares, W. Correr, S. H. Messaddeq, and Y. Messaddeq, “Controlling thermal-induced dewetting of as20se80 thin films for integrated photonics applications,” Opt. Mater. Express 11(6), 1720–1732 (2021).
    [Crossref]
  39. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [Crossref]
  40. Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in ge–sb–s chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
    [Crossref]
  41. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the c band,” Opt. Express 15(22), 14467–14475 (2007).
    [Crossref]
  42. X. Guan, M. Fu, Y. Zheng, W. Yi, J. Qi, G. Li, S. Yin, and X. Li, “Ultra-compact titanium dioxide micro-ring resonators with sub-10-µm radius for on-chip photonics,” Photonics Res. 9(7), 1416–1422 (2021).
    [Crossref]
  43. L. Xu, Y. Guo, J. Wang, Z. Han, H. Liu, J. Michel, L. C. Kimerling, and L. Zhang, “Broadband athermal waveguides and resonators with low anomalous dispersion,” IEEE Access 9, 31967–31974 (2021).
  44. L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A. M. Agarwal, L. C. Kimerling, G. Li, and L. Zhang, “Broadband athermal waveguides and resonators for datacom and telecom applications,” Photonics Res. 6(11), 987–990 (2018).
    [Crossref]
  45. P. Jean, A. Douaud, T. Thibault, S. LaRochelle, Y. Messaddeq, and W. Shi, “Sulfur-rich chalcogenide claddings for athermal and high-q silicon microring resonators,” Opt. Mater. Express 11(3), 913–925 (2021).
    [Crossref]
  46. C.-L. Wu, Y.-J. Hung, R. Fan, D.-H. Ou, J.-Y. Huang, T.-H. Yen, Y.-J. Chiu, M.-H. Shih, Y.-Y. Lin, A.-K. Chu, and C.-K. Lee, “Tantalum pentoxide (ta2o5) based athermal micro-ring resonator,” OSA Continuum 2(4), 1198–1206 (2019).
    [Crossref]
  47. B. Shen, H. Lin, F. Merget, S. S. Azadeh, C. Li, G.-Q. Lo, K. A. Richardson, J. Hu, and J. Witzens, “Broadband couplers for hybrid silicon-chalcogenide glass photonic integrated circuits,” Opt. Express 27(10), 13781–13792 (2019).
    [Crossref]
  48. B. Morrison, A. Casas-Bedoya, G. Ren, K. Vu, Y. Liu, A. Zarifi, T. G. Nguyen, D.-Y. Choi, D. Marpaung, S. J. Madden, A. Mitchell, and B. J. Eggleton, “Compact brillouin devices through hybrid integration on silicon,” Optica 4(8), 847–854 (2017).
    [Crossref]
  49. K. Vu and S. Madden, “Tellurium dioxide erbium doped planar rib waveguide amplifiers with net gain and 2.8db/cm internal gain,” Opt. Express 18(18), 19192–19200 (2010).
    [Crossref]

2021 (12)

M. Zhang, C. Wang, P. Kharel, D. Zhu, and M. Lončar, “Integrated lithium niobate electro-optic modulators: when performance meets scalability,” Optica 8(5), 652–667 (2021).
[Crossref]

H. C. Frankis, D. B. Bonneville, and J. D. B. Bradley, “Tellurite glass microcavity resonators integrated on a silicon photonics platform,” J. Opt. Microsystems 1(02), 1–12 (2021).
[Crossref]

P. Jean, A. Douaud, S. T. Bah, S. LaRochelle, Y. Messaddeq, and W. Shi, “Silicon-coupled tantalum pentoxide microresonators with broadband low thermo-optic coefficient,” Opt. Lett. 46(15), 3813–3816 (2021).
[Crossref]

H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Tantala kerr nonlinear integrated photonics,” Optica 8(6), 811–817 (2021).
[Crossref]

Y. N. Colmenares, S. H. Messaddeq, and Y. Messaddeq, “Studying the kinetics of microstructure formation through dewetting of As-Se thin films,” Phys. Rev. Mater. 5(1), 015605 (2021).
[Crossref]

P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, and W. Shi, “Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding,” Opt. Express 29(13), 20851–20862 (2021).
[Crossref]

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” Nat. Commun. 12(1), 2236 (2021).
[Crossref]

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Y. N. Colmenares, W. Correr, S. H. Messaddeq, and Y. Messaddeq, “Controlling thermal-induced dewetting of as20se80 thin films for integrated photonics applications,” Opt. Mater. Express 11(6), 1720–1732 (2021).
[Crossref]

P. Jean, A. Douaud, T. Thibault, S. LaRochelle, Y. Messaddeq, and W. Shi, “Sulfur-rich chalcogenide claddings for athermal and high-q silicon microring resonators,” Opt. Mater. Express 11(3), 913–925 (2021).
[Crossref]

X. Guan, M. Fu, Y. Zheng, W. Yi, J. Qi, G. Li, S. Yin, and X. Li, “Ultra-compact titanium dioxide micro-ring resonators with sub-10-µm radius for on-chip photonics,” Photonics Res. 9(7), 1416–1422 (2021).
[Crossref]

L. Xu, Y. Guo, J. Wang, Z. Han, H. Liu, J. Michel, L. C. Kimerling, and L. Zhang, “Broadband athermal waveguides and resonators with low anomalous dispersion,” IEEE Access 9, 31967–31974 (2021).

2020 (2)

2019 (4)

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

M. Xin, N. Li, N. Singh, A. Ruocco, Z. Su, E. S. Magden, J. Notaros, D. Vermeulen, E. P. Ippen, M. R. Watts, and F. X. Kärtner, “Optical frequency synthesizer with an integrated erbium tunable laser,” Light: Sci. Appl. 8(1), 122 (2019).
[Crossref]

C.-L. Wu, Y.-J. Hung, R. Fan, D.-H. Ou, J.-Y. Huang, T.-H. Yen, Y.-J. Chiu, M.-H. Shih, Y.-Y. Lin, A.-K. Chu, and C.-K. Lee, “Tantalum pentoxide (ta2o5) based athermal micro-ring resonator,” OSA Continuum 2(4), 1198–1206 (2019).
[Crossref]

B. Shen, H. Lin, F. Merget, S. S. Azadeh, C. Li, G.-Q. Lo, K. A. Richardson, J. Hu, and J. Witzens, “Broadband couplers for hybrid silicon-chalcogenide glass photonic integrated circuits,” Opt. Express 27(10), 13781–13792 (2019).
[Crossref]

2018 (3)

L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A. M. Agarwal, L. C. Kimerling, G. Li, and L. Zhang, “Broadband athermal waveguides and resonators for datacom and telecom applications,” Photonics Res. 6(11), 987–990 (2018).
[Crossref]

H. C. Frankis, D. Su, D. B. Bonneville, and J. D. B. Bradley, “A tellurium oxide microcavity resonator sensor integrated on-chip with a silicon waveguide,” Sensors 18(11), 4061 (2018).
[Crossref]

Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-q-factor al2o3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161–11170 (2018).
[Crossref]

2017 (7)

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in ge-as-se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

I. Shpak, I. Rosola, and O. I. Shepak, “Temperature dependence of the refractive index of glassy alloys of the AsxS100–x System,” J. Appl. Spectrosc. 84(1), 140–143 (2017).
[Crossref]

A. Douaud, S. H. Messaddeq, and Y. Messaddeq, “Microstructure formation in chalcogenide thin films assisted by thermal dewetting,” J. Mater. Sci.: Mater. Electron. 28(10), 6989–6999 (2017).
[Crossref]

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
[Crossref]

B. Morrison, A. Casas-Bedoya, G. Ren, K. Vu, Y. Liu, A. Zarifi, T. G. Nguyen, D.-Y. Choi, D. Marpaung, S. J. Madden, A. Mitchell, and B. J. Eggleton, “Compact brillouin devices through hybrid integration on silicon,” Optica 4(8), 847–854 (2017).
[Crossref]

2016 (3)

2014 (1)

2013 (1)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

2012 (3)

2011 (2)

L. W. Luo, G. S. Wiederhecker, J. Cardenas, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19(7), 6284 (2011).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

2010 (4)

2007 (2)

2002 (1)

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Abediasl, H.

S. Chung, H. Abediasl, and H. Hashemi, “15.4 a 1024-element scalable optical phased array in 0.18µm SOI CMOS,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (2017), pp. 262–263).

Adam, T. N.

Adibi, A.

Agarwal, A.

Agarwal, A. M.

L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A. M. Agarwal, L. C. Kimerling, G. Li, and L. Zhang, “Broadband athermal waveguides and resonators for datacom and telecom applications,” Photonics Res. 6(11), 987–990 (2018).
[Crossref]

Aktary, M.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Atabaki, A. H.

Azadeh, S. S.

B.-d. Villers, S.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Baets, R.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bah, S. T.

Barbosa, F. A. S.

Behunin, R. O.

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Biberman, A.

Bienstman, P.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Blumenthal, D. J.

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bojko, R. J.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Bonneville, D. B.

H. C. Frankis, D. B. Bonneville, and J. D. B. Bradley, “Tellurite glass microcavity resonators integrated on a silicon photonics platform,” J. Opt. Microsystems 1(02), 1–12 (2021).
[Crossref]

H. C. Frankis, D. Su, D. B. Bonneville, and J. D. B. Bradley, “A tellurium oxide microcavity resonator sensor integrated on-chip with a silicon waveguide,” Sensors 18(11), 4061 (2018).
[Crossref]

Bradley, J. D. B.

Brasch, V.

Briles, T. C.

Bryant, A.

Byrd, M.

Cardenas, J.

Carlie, N.

Carlson, D. R.

Casas-Bedoya, A.

Cauchon, J.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Chauhan, N.

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Cheng, H.

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Cheng, R.

Chiu, Y.-J.

Choi, D.-Y.

Chrostowski, L.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Chu, A.-K.

Chung, S.

S. Chung, H. Abediasl, and H. Hashemi, “15.4 a 1024-element scalable optical phased array in 0.18µm SOI CMOS,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (2017), pp. 262–263).

Claes, T.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Colmenares, Y. N.

Y. N. Colmenares, W. Correr, S. H. Messaddeq, and Y. Messaddeq, “Controlling thermal-induced dewetting of as20se80 thin films for integrated photonics applications,” Opt. Mater. Express 11(6), 1720–1732 (2021).
[Crossref]

Y. N. Colmenares, S. H. Messaddeq, and Y. Messaddeq, “Studying the kinetics of microstructure formation through dewetting of As-Se thin films,” Phys. Rev. Mater. 5(1), 015605 (2021).
[Crossref]

Coolbaugh, D.

Correr, W.

Dalton, L. R.

de Heyn, P.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

de Vos, K.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Douaud, A.

Drake, T. E.

Du, Q.

Dumon, P.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dutt, A.

Eggleton, B. J.

Engelsen, N. J.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” Nat. Commun. 12(1), 2236 (2021).
[Crossref]

Fan, R.

Feng, N.-N.

Ferreira de Lima, T.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Frankis, H. C.

H. C. Frankis, D. B. Bonneville, and J. D. B. Bradley, “Tellurite glass microcavity resonators integrated on a silicon photonics platform,” J. Opt. Microsystems 1(02), 1–12 (2021).
[Crossref]

Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-q-factor al2o3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161–11170 (2018).
[Crossref]

H. C. Frankis, D. Su, D. B. Bonneville, and J. D. B. Bradley, “A tellurium oxide microcavity resonator sensor integrated on-chip with a silicon waveguide,” Sensors 18(11), 4061 (2018).
[Crossref]

Fu, M.

X. Guan, M. Fu, Y. Zheng, W. Yi, J. Qi, G. Li, S. Yin, and X. Li, “Ultra-compact titanium dioxide micro-ring resonators with sub-10-µm radius for on-chip photonics,” Photonics Res. 9(7), 1416–1422 (2021).
[Crossref]

Gaeta, A. L.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Geiselmann, M.

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3(1), 20–25 (2016).
[Crossref]

Genest, J.

Gervais, A.

W. Shi, Y. Tian, and A. Gervais, “Scaling capacity of fiber-optic transmission systems via silicon photonics,” Nanophotonics 9(16), 4629–4663 (2020).
[Crossref]

Guan, X.

X. Guan, M. Fu, Y. Zheng, W. Yi, J. Qi, G. Li, S. Yin, and X. Li, “Ultra-compact titanium dioxide micro-ring resonators with sub-10-µm radius for on-chip photonics,” Photonics Res. 9(7), 1416–1422 (2021).
[Crossref]

Guo, Y.

L. Xu, Y. Guo, J. Wang, Z. Han, H. Liu, J. Michel, L. C. Kimerling, and L. Zhang, “Broadband athermal waveguides and resonators with low anomalous dispersion,” IEEE Access 9, 31967–31974 (2021).

L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A. M. Agarwal, L. C. Kimerling, G. Li, and L. Zhang, “Broadband athermal waveguides and resonators for datacom and telecom applications,” Photonics Res. 6(11), 987–990 (2018).
[Crossref]

Hagan, D. E.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Hammood, M.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Han, Z.

L. Xu, Y. Guo, J. Wang, Z. Han, H. Liu, J. Michel, L. C. Kimerling, and L. Zhang, “Broadband athermal waveguides and resonators with low anomalous dispersion,” IEEE Access 9, 31967–31974 (2021).

L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A. M. Agarwal, L. C. Kimerling, G. Li, and L. Zhang, “Broadband athermal waveguides and resonators for datacom and telecom applications,” Photonics Res. 6(11), 987–990 (2018).
[Crossref]

Hashemi, H.

S. Chung, H. Abediasl, and H. Hashemi, “15.4 a 1024-element scalable optical phased array in 0.18µm SOI CMOS,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (2017), pp. 262–263).

He, J.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” Nat. Commun. 12(1), 2236 (2021).
[Crossref]

He, L.

L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A. M. Agarwal, L. C. Kimerling, G. Li, and L. Zhang, “Broadband athermal waveguides and resonators for datacom and telecom applications,” Photonics Res. 6(11), 987–990 (2018).
[Crossref]

Horvath, C.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Hosseini, E. S.

Hu, J.

Huang, G.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” Nat. Commun. 12(1), 2236 (2021).
[Crossref]

Huang, J.-Y.

Huang, Y.

Hung, Y.-J.

Ippen, E. P.

M. Xin, N. Li, N. Singh, A. Ruocco, Z. Su, E. S. Magden, J. Notaros, D. Vermeulen, E. P. Ippen, M. R. Watts, and F. X. Kärtner, “Optical frequency synthesizer with an integrated erbium tunable laser,” Light: Sci. Appl. 8(1), 122 (2019).
[Crossref]

Jackson, J.

C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the ge–sb–te–s–o system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
[Crossref]

Jaeger, N. A. F.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Jayatilleka, H.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Jean, P.

P. Jean, A. Douaud, S. T. Bah, S. LaRochelle, Y. Messaddeq, and W. Shi, “Silicon-coupled tantalum pentoxide microresonators with broadband low thermo-optic coefficient,” Opt. Lett. 46(15), 3813–3816 (2021).
[Crossref]

P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, and W. Shi, “Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding,” Opt. Express 29(13), 20851–20862 (2021).
[Crossref]

P. Jean, A. Douaud, T. Thibault, S. LaRochelle, Y. Messaddeq, and W. Shi, “Sulfur-rich chalcogenide claddings for athermal and high-q silicon microring resonators,” Opt. Mater. Express 11(3), 913–925 (2021).
[Crossref]

P. Jean, A. Douaud, V. Michaud-Belleau, S. H. Messaddeq, J. Genest, S. LaRochelle, Y. Messaddeq, and W. Shi, “Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides,” Opt. Lett. 45(10), 2830–2833 (2020).
[Crossref]

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, and W. Shi, “Hybrid integration of high-q chalcogenide microring resonators on silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2020), p. STh3O.3.

Jhoja, J.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Ji, X.

Jin, N.

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Jost, J. D.

Jung, H.

Kärtner, F. X.

M. Xin, N. Li, N. Singh, A. Ruocco, Z. Su, E. S. Magden, J. Notaros, D. Vermeulen, E. P. Ippen, M. R. Watts, and F. X. Kärtner, “Optical frequency synthesizer with an integrated erbium tunable laser,” Light: Sci. Appl. 8(1), 122 (2019).
[Crossref]

Khan, M. H.

Kharel, P.

Khavasi, A.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Kimerling, L.

Kimerling, L. C.

L. Xu, Y. Guo, J. Wang, Z. Han, H. Liu, J. Michel, L. C. Kimerling, and L. Zhang, “Broadband athermal waveguides and resonators with low anomalous dispersion,” IEEE Access 9, 31967–31974 (2021).

L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A. M. Agarwal, L. C. Kimerling, G. Li, and L. Zhang, “Broadband athermal waveguides and resonators for datacom and telecom applications,” Photonics Res. 6(11), 987–990 (2018).
[Crossref]

Kippenberg, T. J.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” Nat. Commun. 12(1), 2236 (2021).
[Crossref]

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3(1), 20–25 (2016).
[Crossref]

Kita, D.

Knights, A. P.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Kordts, A.

Kumar Selvaraja, S.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

LaRochelle, S.

Leake, G.

Lee, C.-K.

Li, C.

Li, G.

X. Guan, M. Fu, Y. Zheng, W. Yi, J. Qi, G. Li, S. Yin, and X. Li, “Ultra-compact titanium dioxide micro-ring resonators with sub-10-µm radius for on-chip photonics,” Photonics Res. 9(7), 1416–1422 (2021).
[Crossref]

L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A. M. Agarwal, L. C. Kimerling, G. Li, and L. Zhang, “Broadband athermal waveguides and resonators for datacom and telecom applications,” Photonics Res. 6(11), 987–990 (2018).
[Crossref]

Li, J.

Li, L.

Li, N.

Li, X.

X. Guan, M. Fu, Y. Zheng, W. Yi, J. Qi, G. Li, S. Yin, and X. Li, “Ultra-compact titanium dioxide micro-ring resonators with sub-10-µm radius for on-chip photonics,” Photonics Res. 9(7), 1416–1422 (2021).
[Crossref]

Lin, H.

Lin, S.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Lin, Y.-Y.

Lipson, M.

Liu, H.

L. Xu, Y. Guo, J. Wang, Z. Han, H. Liu, J. Michel, L. C. Kimerling, and L. Zhang, “Broadband athermal waveguides and resonators with low anomalous dispersion,” IEEE Access 9, 31967–31974 (2021).

Liu, J.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” Nat. Commun. 12(1), 2236 (2021).
[Crossref]

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
[Crossref]

Liu, K.

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Liu, T.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” Nat. Commun. 12(1), 2236 (2021).
[Crossref]

Liu, Y.

Lo, G.-Q.

Loncar, M.

Luan, E.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Lucas, P.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in ge-as-se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Luo, L. W.

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Madden, S.

Madden, S. J.

Magden, E. S.

Marpaung, D.

Merget, F.

Messaddeq, S. H.

Y. N. Colmenares, S. H. Messaddeq, and Y. Messaddeq, “Studying the kinetics of microstructure formation through dewetting of As-Se thin films,” Phys. Rev. Mater. 5(1), 015605 (2021).
[Crossref]

Y. N. Colmenares, W. Correr, S. H. Messaddeq, and Y. Messaddeq, “Controlling thermal-induced dewetting of as20se80 thin films for integrated photonics applications,” Opt. Mater. Express 11(6), 1720–1732 (2021).
[Crossref]

P. Jean, A. Douaud, V. Michaud-Belleau, S. H. Messaddeq, J. Genest, S. LaRochelle, Y. Messaddeq, and W. Shi, “Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides,” Opt. Lett. 45(10), 2830–2833 (2020).
[Crossref]

A. Douaud, S. H. Messaddeq, and Y. Messaddeq, “Microstructure formation in chalcogenide thin films assisted by thermal dewetting,” J. Mater. Sci.: Mater. Electron. 28(10), 6989–6999 (2017).
[Crossref]

Messaddeq, Y.

Y. N. Colmenares, S. H. Messaddeq, and Y. Messaddeq, “Studying the kinetics of microstructure formation through dewetting of As-Se thin films,” Phys. Rev. Mater. 5(1), 015605 (2021).
[Crossref]

P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, and W. Shi, “Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding,” Opt. Express 29(13), 20851–20862 (2021).
[Crossref]

P. Jean, A. Douaud, S. T. Bah, S. LaRochelle, Y. Messaddeq, and W. Shi, “Silicon-coupled tantalum pentoxide microresonators with broadband low thermo-optic coefficient,” Opt. Lett. 46(15), 3813–3816 (2021).
[Crossref]

Y. N. Colmenares, W. Correr, S. H. Messaddeq, and Y. Messaddeq, “Controlling thermal-induced dewetting of as20se80 thin films for integrated photonics applications,” Opt. Mater. Express 11(6), 1720–1732 (2021).
[Crossref]

P. Jean, A. Douaud, T. Thibault, S. LaRochelle, Y. Messaddeq, and W. Shi, “Sulfur-rich chalcogenide claddings for athermal and high-q silicon microring resonators,” Opt. Mater. Express 11(3), 913–925 (2021).
[Crossref]

P. Jean, A. Douaud, V. Michaud-Belleau, S. H. Messaddeq, J. Genest, S. LaRochelle, Y. Messaddeq, and W. Shi, “Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides,” Opt. Lett. 45(10), 2830–2833 (2020).
[Crossref]

A. Douaud, S. H. Messaddeq, and Y. Messaddeq, “Microstructure formation in chalcogenide thin films assisted by thermal dewetting,” J. Mater. Sci.: Mater. Electron. 28(10), 6989–6999 (2017).
[Crossref]

P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, and W. Shi, “Hybrid integration of high-q chalcogenide microring resonators on silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2020), p. STh3O.3.

Michaud-Belleau, V.

Michel, J.

L. Xu, Y. Guo, J. Wang, Z. Han, H. Liu, J. Michel, L. C. Kimerling, and L. Zhang, “Broadband athermal waveguides and resonators with low anomalous dispersion,” IEEE Access 9, 31967–31974 (2021).

L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A. M. Agarwal, L. C. Kimerling, G. Li, and L. Zhang, “Broadband athermal waveguides and resonators for datacom and telecom applications,” Photonics Res. 6(11), 987–990 (2018).
[Crossref]

Michon, J.

Mistry, A.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Mitchell, A.

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Morrison, B.

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Murugan, G. S.

Nelson, K. D.

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Nguyen, T. G.

Notaros, J.

M. Xin, N. Li, N. Singh, A. Ruocco, Z. Su, E. S. Magden, J. Notaros, D. Vermeulen, E. P. Ippen, M. R. Watts, and F. X. Kärtner, “Optical frequency synthesizer with an integrated erbium tunable laser,” Light: Sci. Appl. 8(1), 122 (2019).
[Crossref]

Novak, S.

Okawachi, Y.

Ou, D.-H.

Papp, S. B.

Patrick, N. S.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Petit, L.

Pfeiffer, M. H. P.

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3(1), 20–25 (2016).
[Crossref]

Prucnal, P. R.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Puckett, M. W.

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Purnawirman,

Qi, J.

X. Guan, M. Fu, Y. Zheng, W. Yi, J. Qi, G. Li, S. Yin, and X. Li, “Ultra-compact titanium dioxide micro-ring resonators with sub-10-µm radius for on-chip photonics,” Photonics Res. 9(7), 1416–1422 (2021).
[Crossref]

Qi, M.

Qi, S.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in ge-as-se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Rabiei, P.

Raja, A. S.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” Nat. Commun. 12(1), 2236 (2021).
[Crossref]

Rakich, P. T.

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Ren, G.

Richardson, K.

Richardson, K. A.

Rivero-Baleine, C.

C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the ge–sb–te–s–o system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
[Crossref]

Roberts, S. P.

Rosola, I.

I. Shpak, I. Rosola, and O. I. Shepak, “Temperature dependence of the refractive index of glassy alloys of the AsxS100–x System,” J. Appl. Spectrosc. 84(1), 140–143 (2017).
[Crossref]

Ruocco, A.

M. Xin, N. Li, N. Singh, A. Ruocco, Z. Su, E. S. Magden, J. Notaros, D. Vermeulen, E. P. Ippen, M. R. Watts, and F. X. Kärtner, “Optical frequency synthesizer with an integrated erbium tunable laser,” Light: Sci. Appl. 8(1), 122 (2019).
[Crossref]

Setzer, K.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Shams-Ansari, A.

Shaw, M. J.

Shekhar, S.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Shen, B.

Shen, H.

Shepak, O. I.

I. Shpak, I. Rosola, and O. I. Shepak, “Temperature dependence of the refractive index of glassy alloys of the AsxS100–x System,” J. Appl. Spectrosc. 84(1), 140–143 (2017).
[Crossref]

Shi, W.

P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, and W. Shi, “Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding,” Opt. Express 29(13), 20851–20862 (2021).
[Crossref]

P. Jean, A. Douaud, S. T. Bah, S. LaRochelle, Y. Messaddeq, and W. Shi, “Silicon-coupled tantalum pentoxide microresonators with broadband low thermo-optic coefficient,” Opt. Lett. 46(15), 3813–3816 (2021).
[Crossref]

P. Jean, A. Douaud, T. Thibault, S. LaRochelle, Y. Messaddeq, and W. Shi, “Sulfur-rich chalcogenide claddings for athermal and high-q silicon microring resonators,” Opt. Mater. Express 11(3), 913–925 (2021).
[Crossref]

W. Shi, Y. Tian, and A. Gervais, “Scaling capacity of fiber-optic transmission systems via silicon photonics,” Nanophotonics 9(16), 4629–4663 (2020).
[Crossref]

P. Jean, A. Douaud, V. Michaud-Belleau, S. H. Messaddeq, J. Genest, S. LaRochelle, Y. Messaddeq, and W. Shi, “Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides,” Opt. Lett. 45(10), 2830–2833 (2020).
[Crossref]

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, and W. Shi, “Hybrid integration of high-q chalcogenide microring resonators on silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2020), p. STh3O.3.

Shih, M.-H.

Shoman, H.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Shpak, I.

I. Shpak, I. Rosola, and O. I. Shepak, “Temperature dependence of the refractive index of glassy alloys of the AsxS100–x System,” J. Appl. Spectrosc. 84(1), 140–143 (2017).
[Crossref]

Singh, N.

M. Xin, N. Li, N. Singh, A. Ruocco, Z. Su, E. S. Magden, J. Notaros, D. Vermeulen, E. P. Ippen, M. R. Watts, and F. X. Kärtner, “Optical frequency synthesizer with an integrated erbium tunable laser,” Light: Sci. Appl. 8(1), 122 (2019).
[Crossref]

Smith, C.

C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the ge–sb–te–s–o system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
[Crossref]

Soltani, M.

Steier, W. H.

Stevanovic, D.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Su, D.

H. C. Frankis, D. Su, D. B. Bonneville, and J. D. B. Bradley, “A tellurium oxide microcavity resonator sensor integrated on-chip with a silicon waveguide,” Sensors 18(11), 4061 (2018).
[Crossref]

Su, Z.

Subramanian, A. Z.

Tait, A. N.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Tarasov, V.

Thibault, T.

Tian, Y.

W. Shi, Y. Tian, and A. Gervais, “Scaling capacity of fiber-optic transmission systems via silicon photonics,” Nanophotonics 9(16), 4629–4663 (2020).
[Crossref]

Timurdogan, E.

van Thourhout, D.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

van Vaerenbergh, T.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vermeulen, D.

M. Xin, N. Li, N. Singh, A. Ruocco, Z. Su, E. S. Magden, J. Notaros, D. Vermeulen, E. P. Ippen, M. R. Watts, and F. X. Kärtner, “Optical frequency synthesizer with an integrated erbium tunable laser,” Light: Sci. Appl. 8(1), 122 (2019).
[Crossref]

Vu, K.

Wada, K.

L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A. M. Agarwal, L. C. Kimerling, G. Li, and L. Zhang, “Broadband athermal waveguides and resonators for datacom and telecom applications,” Photonics Res. 6(11), 987–990 (2018).
[Crossref]

Wang, C.

Wang, J.

L. Xu, Y. Guo, J. Wang, Z. Han, H. Liu, J. Michel, L. C. Kimerling, and L. Zhang, “Broadband athermal waveguides and resonators with low anomalous dispersion,” IEEE Access 9, 31967–31974 (2021).

Wang, R.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in ge-as-se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Wang, R. N.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” Nat. Commun. 12(1), 2236 (2021).
[Crossref]

Wang, X.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Wang, Y.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in ge-as-se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Watts, M. R.

Westwood-Bachman, J. N.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Wiederhecker, G. S.

Wilkinson, J. S.

Witt, D.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Witzens, J.

Wright, J. B.

Wu, C.-L.

Wu, J.

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Xiao, S.

Xin, M.

M. Xin, N. Li, N. Singh, A. Ruocco, Z. Su, E. S. Magden, J. Notaros, D. Vermeulen, E. P. Ippen, M. R. Watts, and F. X. Kärtner, “Optical frequency synthesizer with an integrated erbium tunable laser,” Light: Sci. Appl. 8(1), 122 (2019).
[Crossref]

Xu, L.

L. Xu, Y. Guo, J. Wang, Z. Han, H. Liu, J. Michel, L. C. Kimerling, and L. Zhang, “Broadband athermal waveguides and resonators with low anomalous dispersion,” IEEE Access 9, 31967–31974 (2021).

Yang, A.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in ge-as-se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Yang, Z.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in ge-as-se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Yariv, A.

A. Yariv and P. Yeh, Photonics (Oxford University Press, 2006).

Yegnanarayanan, S.

Yeh, P.

A. Yariv and P. Yeh, Photonics (Oxford University Press, 2006).

Yen, T.-H.

Yi, W.

X. Guan, M. Fu, Y. Zheng, W. Yi, J. Qi, G. Li, S. Yin, and X. Li, “Ultra-compact titanium dioxide micro-ring resonators with sub-10-µm radius for on-chip photonics,” Photonics Res. 9(7), 1416–1422 (2021).
[Crossref]

Yin, S.

X. Guan, M. Fu, Y. Zheng, W. Yi, J. Qi, G. Li, S. Yin, and X. Li, “Ultra-compact titanium dioxide micro-ring resonators with sub-10-µm radius for on-chip photonics,” Photonics Res. 9(7), 1416–1422 (2021).
[Crossref]

Yu, S.-P.

Yun, H.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Zarifi, A.

Zervas, M.

Zervas, M. N.

Zhang, C.

Zhang, L.

L. Xu, Y. Guo, J. Wang, Z. Han, H. Liu, J. Michel, L. C. Kimerling, and L. Zhang, “Broadband athermal waveguides and resonators with low anomalous dispersion,” IEEE Access 9, 31967–31974 (2021).

L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A. M. Agarwal, L. C. Kimerling, G. Li, and L. Zhang, “Broadband athermal waveguides and resonators for datacom and telecom applications,” Photonics Res. 6(11), 987–990 (2018).
[Crossref]

Zhang, M.

Zhang, W.

Zhao, Q.

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Zheng, Y.

X. Guan, M. Fu, Y. Zheng, W. Yi, J. Qi, G. Li, S. Yin, and X. Li, “Ultra-compact titanium dioxide micro-ring resonators with sub-10-µm radius for on-chip photonics,” Photonics Res. 9(7), 1416–1422 (2021).
[Crossref]

Zhu, D.

IEEE Access (1)

L. Xu, Y. Guo, J. Wang, Z. Han, H. Liu, J. Michel, L. C. Kimerling, and L. Zhang, “Broadband athermal waveguides and resonators with low anomalous dispersion,” IEEE Access 9, 31967–31974 (2021).

IEEE J. Sel. Top. Quantum Electron. (1)

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-d. Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

J. Appl. Spectrosc. (1)

I. Shpak, I. Rosola, and O. I. Shepak, “Temperature dependence of the refractive index of glassy alloys of the AsxS100–x System,” J. Appl. Spectrosc. 84(1), 140–143 (2017).
[Crossref]

J. Lightwave Technol. (2)

J. Mater. Sci.: Mater. Electron. (1)

A. Douaud, S. H. Messaddeq, and Y. Messaddeq, “Microstructure formation in chalcogenide thin films assisted by thermal dewetting,” J. Mater. Sci.: Mater. Electron. 28(10), 6989–6999 (2017).
[Crossref]

J. Non-Cryst. Solids (1)

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in ge-as-se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

J. Opt. Microsystems (1)

H. C. Frankis, D. B. Bonneville, and J. D. B. Bradley, “Tellurite glass microcavity resonators integrated on a silicon photonics platform,” J. Opt. Microsystems 1(02), 1–12 (2021).
[Crossref]

J. Solid State Chem. (1)

C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the ge–sb–te–s–o system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Light: Sci. Appl. (1)

M. Xin, N. Li, N. Singh, A. Ruocco, Z. Su, E. S. Magden, J. Notaros, D. Vermeulen, E. P. Ippen, M. R. Watts, and F. X. Kärtner, “Optical frequency synthesizer with an integrated erbium tunable laser,” Light: Sci. Appl. 8(1), 122 (2019).
[Crossref]

Nanophotonics (1)

W. Shi, Y. Tian, and A. Gervais, “Scaling capacity of fiber-optic transmission systems via silicon photonics,” Nanophotonics 9(16), 4629–4663 (2020).
[Crossref]

Nat. Commun. (2)

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” Nat. Commun. 12(1), 2236 (2021).
[Crossref]

M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, and D. J. Blumenthal, “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth,” Nat. Commun. 12(1), 934 (2021).
[Crossref]

Nat. Photonics (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Opt. Express (10)

Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-q-factor al2o3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161–11170 (2018).
[Crossref]

J. D. B. Bradley and E. S. Hosseini, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
[Crossref]

L. W. Luo, G. S. Wiederhecker, J. Cardenas, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19(7), 6284 (2011).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-cmos-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
[Crossref]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
[Crossref]

J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
[Crossref]

P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, and W. Shi, “Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding,” Opt. Express 29(13), 20851–20862 (2021).
[Crossref]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the c band,” Opt. Express 15(22), 14467–14475 (2007).
[Crossref]

B. Shen, H. Lin, F. Merget, S. S. Azadeh, C. Li, G.-Q. Lo, K. A. Richardson, J. Hu, and J. Witzens, “Broadband couplers for hybrid silicon-chalcogenide glass photonic integrated circuits,” Opt. Express 27(10), 13781–13792 (2019).
[Crossref]

K. Vu and S. Madden, “Tellurium dioxide erbium doped planar rib waveguide amplifiers with net gain and 2.8db/cm internal gain,” Opt. Express 18(18), 19192–19200 (2010).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Optica (6)

OSA Continuum (1)

Photonics Res. (2)

L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A. M. Agarwal, L. C. Kimerling, G. Li, and L. Zhang, “Broadband athermal waveguides and resonators for datacom and telecom applications,” Photonics Res. 6(11), 987–990 (2018).
[Crossref]

X. Guan, M. Fu, Y. Zheng, W. Yi, J. Qi, G. Li, S. Yin, and X. Li, “Ultra-compact titanium dioxide micro-ring resonators with sub-10-µm radius for on-chip photonics,” Photonics Res. 9(7), 1416–1422 (2021).
[Crossref]

Phys. Rev. Appl. (1)

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
[Crossref]

Phys. Rev. Mater. (1)

Y. N. Colmenares, S. H. Messaddeq, and Y. Messaddeq, “Studying the kinetics of microstructure formation through dewetting of As-Se thin films,” Phys. Rev. Mater. 5(1), 015605 (2021).
[Crossref]

Sensors (1)

H. C. Frankis, D. Su, D. B. Bonneville, and J. D. B. Bradley, “A tellurium oxide microcavity resonator sensor integrated on-chip with a silicon waveguide,” Sensors 18(11), 4061 (2018).
[Crossref]

Other (3)

S. Chung, H. Abediasl, and H. Hashemi, “15.4 a 1024-element scalable optical phased array in 0.18µm SOI CMOS,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (2017), pp. 262–263).

P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, and W. Shi, “Hybrid integration of high-q chalcogenide microring resonators on silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2020), p. STh3O.3.

A. Yariv and P. Yeh, Photonics (Oxford University Press, 2006).

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic of the process flow for the fabrication of micro-trench waveguides co-integrated with silicon waveguides. The steps are as follows: (1) Lithography and etching of the silicon structures, (2) deposition of the top silica cladding, (3) lithography and etching of the micro-trench, (4) thin film deposition, (5) optional process to remove the top layer and leave a rectangular waveguide as shown in (6). In this work, when there is a step (5), it consists of thermal dewetting. (b,c) type I/II waveguide schematic (left) and top view micrograph of a fabricated device (right). The silicon waveguide (Si wg) on the micrographs is faintly visible through the chalcogenide cladding. The materials are identified using different colors: brown for photoresist (PR), light blue for silicon dioxide (SiO$_2$), grey for silicon (Si) and red for the material to co-integrate (Mat).
Fig. 2.
Fig. 2. (a) Effective index of the guided modes in a waveguide with $w_t = 2.0$ $\mathrm {\mu }$m and $t_f = 1.0$ $\mathrm {\mu }$m with varying refractive index $n$. (b) Effective index of the guided modes in a waveguide with a fixed refractive index $n=2.05$ and $t_f = 1.0$ $\mathrm {\mu }$m. Both figures consider type II waveguides.
Fig. 3.
Fig. 3. Simulated quality factor limited by (a,b) substrate leakage $Q_l$ and (c,d) bending leakage $Q_b$. Type I waveguides are shown in (a) and (c) while type II waveguides are shown in (b) and (d). The waveguide dimensions are constant at $w_t = 2.5$ $\mathrm {\mu }$m and $t_f = 1.0$ $\mathrm {\mu }$m.
Fig. 4.
Fig. 4. Effective index of (left panel) the fundamental quasi-TE mode in a 220 nm thick silicon waveguide with varying width and of (right panels) the guided (up to 20) quasi-TE modes in type II waveguides with $t_f = 1$ $\mathrm {\mu }$m, varying width and different refractive index: from left to right, $n=1.65$, $n=2.05$, $n=2.25$, $n=2.45$.
Fig. 5.
Fig. 5. Cross-section SEM images of a (a) type I waveguide and (d) type II waveguide. (b,c,e,f) Perspective SEM images of MRs with $R = 100$ $\mathrm {\mu }$m using different thin film materials with refractive index: (b) Ta2O5, $n = 2.07$ (c) Ge23Sb7S70 $n=2.17$, (e) As20S80 $n=2.19$ and (f) As20Se80 $=2.57$. (b) and (c) are examples of type I waveguides while (e) and (f) are examples of type II waveguides.
Fig. 6.
Fig. 6. Measured transmittance of micro-trench resonators with $R=100$ $\mathrm {\mu }$m and various materials (a) Type I and Ta2O5, (b) Type I and Ge23Sb7S70, (c) Type II and As40S60 and (d) Type II and As20S80.
Fig. 7.
Fig. 7. (a,d) Top view micrograph of As20S80 and As20Se80 MR with $R = 5$ $\mathrm {\mu }$m, respectively. (b,c) Measured transmittances with an inset showing the simulated electric field intensity mode profile at 1550 nm. (c,f) Single resonance with a Lorentzian fit to extract $Q$.
Fig. 8.
Fig. 8. (a) Schematic of the multilayer waveguide combining Ta2O5 and As20S80. (b) Measured transmittance, (c) quality factor (d) group index and (e) temperature dependent wavelength shift $TDWS$ of the multilayer with $R = 100$ $\mathrm {\mu }$m. The insets in (d) show a perturbed resonance (i) and an unperturbed resonance (ii).

Tables (1)

Tables Icon

Table 1. Review of micro-trench resonator demonstrations

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q 1 = Q c 1 + Q s 1 + Q a 1 + Q b 1 + Q l 1 .
Q i = 2 Q 1 + T 0 ,
Q i 2 π n g α λ r ,

Metrics