Abstract

We propose an all-optical networking solution for a wide area network built on shared multipoint-to-multipoint lightpaths that, for short, we call “multipaths.” A multipath concentrates the traffic of a group of source nodes on a wavelength channel using an adapted medium access control protocol and multicasts this traffic to a group of destination nodes that extract their own data from the confluent stream. The proposed network can be built using existing components and appears less complex and more efficient in terms of energy consumption than alternatives like optical packet switching and optical burst switching. The paper presents the multipath architecture and compares its energy consumption to that of a classical router-based Internet service provider network. A flow-aware dynamic bandwidth allocation algorithm is proposed and shown to have excellent performance in terms of throughput and delay.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yoo, “Energy efficiency in the future Internet: The role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 406–418, Mar.–Apr.2011.
    [CrossRef]
  2. “SMART 2020: Enabling the low carbon economy in the information age,” Report of Global e-Sustainability Initiative, 2008.
  3. D. Kilper, G. Atkinson, S. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communication networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar.–Apr.2011.
    [CrossRef]
  4. E. Bonetto, L. Chiaraviglio, D. Cuda, G. Castillo, and F. Neri, “Optical technologies can improve the energy efficiency of networks,” in Proc. of ECOC, Sept. 2009.
  5. P. Pavon-Marino and F. Neri, “On the myths of optical burst switching,” IEEE Trans. Commun., vol. 59, no. 9, pp. 2574–2584, Sept.2011.
    [CrossRef]
  6. R. Tucker, “Green optical communications—Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 261–274, Mar.–Apr.2011.
    [CrossRef]
  7. D. Cuda, R. Indre, E. L. Rouzic, and J. Roberts, “Getting routers out of the core: Building an all-optical network with multipaths,” in Proc. of ONDM, 2012.
  8. V. Chan, “Optical flow switching networks,” Proc. IEEE, vol. 100, no. 5, pp. 1079–1090, May2012.
    [CrossRef]
  9. P. Petracca, M. Melia, E. Leonardi, and F. Neri, “Design of WDM networks exploiting OTDM and light-splitters,” Lect. Notes Comput. Sci., vol. 2601, pp. 433–446, 2003.
  10. I. Chlamtac and A. Gumaste, “Light-trails: A solution to IP centric communication in the optical domain,” Lect. Notes Comput. Sci., vol. 2601, pp. 634–644, 2003.
  11. N. Bouabdallah, “Sub-wavelength solutions for next-generation optical networks,” IEEE Commun. Mag., vol. 45, no. 8, pp. 36–43, Aug.2007.
    [CrossRef]
  12. I. Widjaja, I. Saniée, R. Giles, and D. Mitra, “Light core and intelligent edge for a flexible, thin-layered and cost effective optical transport network,” IEEE Commun. Mag., vol. 41, no. 5, pp. S30–S36, May2003.
    [CrossRef]
  13. I. Saniée and I. Widjaja, “Design and performance of randomized schedules for time-domain wavelength interleaved networks,” Bell Labs Tech. J., vol. 14, no. 2, pp. 97–111, 2009.
    [CrossRef]
  14. P. Robert and J. Roberts, “A flow-aware MAC protocol for a passive optical metropolitan area network,” in Proc. of ITC 23, 2011 [Online]. Available: http://arxiv.org/abs/1102.3538v1.
  15. J. D. Angelopoulos, K. Kanonakis, G. Koukouvakis, H. Leligou, C. Matrakidis, T. Orphanoudakis, and A. Stavdas, “An optical network architecture with distributed switching inside node clusters features improved loss, efficiency, and cost,” J. Lightwave Technol., vol. 25, pp. 1138–1146, 2007.
    [CrossRef]
  16. A. Stavdas, T. Orphanoudakis, H. Leligou, K. Kanonakis, C. Matrakidis, A. Drakos, J. Angelopoulos, and A. Lord, “Dynamic canon: A scalable multidomain core network,” IEEE Commun. Mag., vol. 46, no. 6, pp. 138–144, June2008.
    [CrossRef]
  17. “Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification,” ITU-T Recommendation G.984.3, 2008.
  18. “LAN/MAN CSMA/CDE (Ethernet) Access Method, Section 5,” IEEE Standard, 2008.
  19. C. Roger, J. Orozco, and P. Niger, “Optical access-metro network architecture based on passive access and burst-mode transmission,” in 7th Communication Networks and Services Research Conf., 2009.
  20. M. Sek, A. Bononi, L. A. Rusch, and M. Menif, “Gain stabilization in gain clamped EDFA cascades fed by WDM burst-mode packet traffic,” J. Lightwave Technol., vol. 18, no. 3, p. 308, Mar.2000.
    [CrossRef]
  21. C. Su, L. K. Chen, and K. W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” J. Lightwave Technol., vol. 15, pp. 590–606, 1997.
    [CrossRef]
  22. E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” IETF RFC 3945, 2004.
  23. W. Vereecken and B. Lannoo, “Final report: Collection of data about energy consumption in network elements and subsystems,” TREND Deliverable FP7-ICT-257740/ D1.3, June2012.
  24. A. Morea, S. Spadaro, O. Rival, J. Perello, F. Agraz, and D. Verchere, “Power management of optoelectronic interfaces for dynamic optical networks,” in 37th European Conf. and Expo. on Optical Communications (ECOC), 2011.
  25. SUN-GE8100 Optical Line Terminal, Product Data Sheet [Online]. Available: http://suntelecommunication.cn/products/EPON.asp.
  26. Alcatel-Lucent 1675 LambdaUnite Multi Service Switch, Product Data Sheet 2009 [Online]. Available: http://www.alcatel-lucent.com.
  27. W. V. Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photonic Network Commun., vol. 24, no. 2, pp. 86–102, 2012.
    [CrossRef]
  28. W. Hou, L. Gua, and X. Wei, “Robust and integrated grooming for power and port cost-efficient design in IP over WDM networks,” J. Lightwave Technol., vol. 29, no. 20, pp. 3035–3047, 2011.
    [CrossRef]
  29. P. Winzer, G. Raybo, H. Song, A. Ademiecki, S. Corteselli, A. Gnauck, D. Fishman, C. Doerr, S. Chandrasekar, L. Buhl, T. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK transmission: From laboratory experiments to field trials,” J. Lightwave Technol., vol. 26, no. 20, pp. 3388–3402, Oct.2008.
    [CrossRef]
  30. “Spectral grids for WDM applications: DWDM frequency grid,” ITU Recommendation G.694.1, 2002 [Online]. Available: http://www.itu.int/rec/T-REC-G.694.1-200206-I/en.
  31. S. Oueslati and J. Roberts, “A new direction for quality of service: Flow aware networking,” in Proc of NGI, 2005.
  32. M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,” Comput. Commun. Rev., vol. 25, no. 4, pp. 231–242, Oct.1995 [Online]. Available: http://doi.acm.org/10.1145/217391.217453.
    [CrossRef]
  33. A. Kortebi, S. Oueslati, and J. Roberts, “Implicit service differentiation using deficit round robin,” in Proc of ITC 19, 2005.
  34. T. Bonald, “Insensitive traffic models for communication networks,” Discrete Event Dyn. Syst., vol. 17, no. 3, pp. 405–421, Sept.2007, [Online]. Available: http://dx.doi.org/10.1007/s10626-007-0012-5.
    [CrossRef]

2012 (2)

V. Chan, “Optical flow switching networks,” Proc. IEEE, vol. 100, no. 5, pp. 1079–1090, May2012.
[CrossRef]

W. V. Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photonic Network Commun., vol. 24, no. 2, pp. 86–102, 2012.
[CrossRef]

2011 (5)

W. Hou, L. Gua, and X. Wei, “Robust and integrated grooming for power and port cost-efficient design in IP over WDM networks,” J. Lightwave Technol., vol. 29, no. 20, pp. 3035–3047, 2011.
[CrossRef]

S. Yoo, “Energy efficiency in the future Internet: The role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 406–418, Mar.–Apr.2011.
[CrossRef]

D. Kilper, G. Atkinson, S. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communication networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar.–Apr.2011.
[CrossRef]

P. Pavon-Marino and F. Neri, “On the myths of optical burst switching,” IEEE Trans. Commun., vol. 59, no. 9, pp. 2574–2584, Sept.2011.
[CrossRef]

R. Tucker, “Green optical communications—Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 261–274, Mar.–Apr.2011.
[CrossRef]

2009 (1)

I. Saniée and I. Widjaja, “Design and performance of randomized schedules for time-domain wavelength interleaved networks,” Bell Labs Tech. J., vol. 14, no. 2, pp. 97–111, 2009.
[CrossRef]

2008 (2)

2007 (3)

J. D. Angelopoulos, K. Kanonakis, G. Koukouvakis, H. Leligou, C. Matrakidis, T. Orphanoudakis, and A. Stavdas, “An optical network architecture with distributed switching inside node clusters features improved loss, efficiency, and cost,” J. Lightwave Technol., vol. 25, pp. 1138–1146, 2007.
[CrossRef]

N. Bouabdallah, “Sub-wavelength solutions for next-generation optical networks,” IEEE Commun. Mag., vol. 45, no. 8, pp. 36–43, Aug.2007.
[CrossRef]

T. Bonald, “Insensitive traffic models for communication networks,” Discrete Event Dyn. Syst., vol. 17, no. 3, pp. 405–421, Sept.2007, [Online]. Available: http://dx.doi.org/10.1007/s10626-007-0012-5.
[CrossRef]

2003 (2)

I. Widjaja, I. Saniée, R. Giles, and D. Mitra, “Light core and intelligent edge for a flexible, thin-layered and cost effective optical transport network,” IEEE Commun. Mag., vol. 41, no. 5, pp. S30–S36, May2003.
[CrossRef]

P. Petracca, M. Melia, E. Leonardi, and F. Neri, “Design of WDM networks exploiting OTDM and light-splitters,” Lect. Notes Comput. Sci., vol. 2601, pp. 433–446, 2003.

2000 (1)

1997 (1)

C. Su, L. K. Chen, and K. W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” J. Lightwave Technol., vol. 15, pp. 590–606, 1997.
[CrossRef]

1995 (1)

M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,” Comput. Commun. Rev., vol. 25, no. 4, pp. 231–242, Oct.1995 [Online]. Available: http://doi.acm.org/10.1145/217391.217453.
[CrossRef]

Ademiecki, A.

Agraz, F.

A. Morea, S. Spadaro, O. Rival, J. Perello, F. Agraz, and D. Verchere, “Power management of optoelectronic interfaces for dynamic optical networks,” in 37th European Conf. and Expo. on Optical Communications (ECOC), 2011.

Angelopoulos, J.

A. Stavdas, T. Orphanoudakis, H. Leligou, K. Kanonakis, C. Matrakidis, A. Drakos, J. Angelopoulos, and A. Lord, “Dynamic canon: A scalable multidomain core network,” IEEE Commun. Mag., vol. 46, no. 6, pp. 138–144, June2008.
[CrossRef]

Angelopoulos, J. D.

Atkinson, G.

D. Kilper, G. Atkinson, S. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communication networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar.–Apr.2011.
[CrossRef]

Basch, B.

Blume, O.

D. Kilper, G. Atkinson, S. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communication networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar.–Apr.2011.
[CrossRef]

Bonald, T.

T. Bonald, “Insensitive traffic models for communication networks,” Discrete Event Dyn. Syst., vol. 17, no. 3, pp. 405–421, Sept.2007, [Online]. Available: http://dx.doi.org/10.1007/s10626-007-0012-5.
[CrossRef]

Bonetto, E.

E. Bonetto, L. Chiaraviglio, D. Cuda, G. Castillo, and F. Neri, “Optical technologies can improve the energy efficiency of networks,” in Proc. of ECOC, Sept. 2009.

Bononi, A.

Bouabdallah, N.

N. Bouabdallah, “Sub-wavelength solutions for next-generation optical networks,” IEEE Commun. Mag., vol. 45, no. 8, pp. 36–43, Aug.2007.
[CrossRef]

Buhl, L.

Castillo, G.

E. Bonetto, L. Chiaraviglio, D. Cuda, G. Castillo, and F. Neri, “Optical technologies can improve the energy efficiency of networks,” in Proc. of ECOC, Sept. 2009.

Chan, V.

V. Chan, “Optical flow switching networks,” Proc. IEEE, vol. 100, no. 5, pp. 1079–1090, May2012.
[CrossRef]

Chandrasekar, S.

Chen, L. K.

C. Su, L. K. Chen, and K. W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” J. Lightwave Technol., vol. 15, pp. 590–606, 1997.
[CrossRef]

Cheung, K. W.

C. Su, L. K. Chen, and K. W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” J. Lightwave Technol., vol. 15, pp. 590–606, 1997.
[CrossRef]

Chiaraviglio, L.

E. Bonetto, L. Chiaraviglio, D. Cuda, G. Castillo, and F. Neri, “Optical technologies can improve the energy efficiency of networks,” in Proc. of ECOC, Sept. 2009.

Chlamtac, I.

I. Chlamtac and A. Gumaste, “Light-trails: A solution to IP centric communication in the optical domain,” Lect. Notes Comput. Sci., vol. 2601, pp. 634–644, 2003.

Colle, D.

W. V. Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photonic Network Commun., vol. 24, no. 2, pp. 86–102, 2012.
[CrossRef]

Corteselli, S.

Cuda, D.

E. Bonetto, L. Chiaraviglio, D. Cuda, G. Castillo, and F. Neri, “Optical technologies can improve the energy efficiency of networks,” in Proc. of ECOC, Sept. 2009.

D. Cuda, R. Indre, E. L. Rouzic, and J. Roberts, “Getting routers out of the core: Building an all-optical network with multipaths,” in Proc. of ONDM, 2012.

Demeester, P.

W. V. Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photonic Network Commun., vol. 24, no. 2, pp. 86–102, 2012.
[CrossRef]

Doerr, C.

Drakos, A.

A. Stavdas, T. Orphanoudakis, H. Leligou, K. Kanonakis, C. Matrakidis, A. Drakos, J. Angelopoulos, and A. Lord, “Dynamic canon: A scalable multidomain core network,” IEEE Commun. Mag., vol. 46, no. 6, pp. 138–144, June2008.
[CrossRef]

Fishman, D.

Giles, R.

I. Widjaja, I. Saniée, R. Giles, and D. Mitra, “Light core and intelligent edge for a flexible, thin-layered and cost effective optical transport network,” IEEE Commun. Mag., vol. 41, no. 5, pp. S30–S36, May2003.
[CrossRef]

Gnauck, A.

Goyal, S.

D. Kilper, G. Atkinson, S. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communication networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar.–Apr.2011.
[CrossRef]

Gua, L.

Gumaste, A.

I. Chlamtac and A. Gumaste, “Light-trails: A solution to IP centric communication in the optical domain,” Lect. Notes Comput. Sci., vol. 2601, pp. 634–644, 2003.

Heddeghem, W. V.

W. V. Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photonic Network Commun., vol. 24, no. 2, pp. 86–102, 2012.
[CrossRef]

Higuma, K.

Hou, W.

Idzikowski, F.

W. V. Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photonic Network Commun., vol. 24, no. 2, pp. 86–102, 2012.
[CrossRef]

Indre, R.

D. Cuda, R. Indre, E. L. Rouzic, and J. Roberts, “Getting routers out of the core: Building an all-optical network with multipaths,” in Proc. of ONDM, 2012.

Kanonakis, K.

A. Stavdas, T. Orphanoudakis, H. Leligou, K. Kanonakis, C. Matrakidis, A. Drakos, J. Angelopoulos, and A. Lord, “Dynamic canon: A scalable multidomain core network,” IEEE Commun. Mag., vol. 46, no. 6, pp. 138–144, June2008.
[CrossRef]

J. D. Angelopoulos, K. Kanonakis, G. Koukouvakis, H. Leligou, C. Matrakidis, T. Orphanoudakis, and A. Stavdas, “An optical network architecture with distributed switching inside node clusters features improved loss, efficiency, and cost,” J. Lightwave Technol., vol. 25, pp. 1138–1146, 2007.
[CrossRef]

Kawanishi, T.

Kilper, D.

D. Kilper, G. Atkinson, S. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communication networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar.–Apr.2011.
[CrossRef]

Korotky, S.

D. Kilper, G. Atkinson, S. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communication networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar.–Apr.2011.
[CrossRef]

Kortebi, A.

A. Kortebi, S. Oueslati, and J. Roberts, “Implicit service differentiation using deficit round robin,” in Proc of ITC 19, 2005.

Koukouvakis, G.

Lannoo, B.

W. Vereecken and B. Lannoo, “Final report: Collection of data about energy consumption in network elements and subsystems,” TREND Deliverable FP7-ICT-257740/ D1.3, June2012.

Lee, W.

Leligou, H.

A. Stavdas, T. Orphanoudakis, H. Leligou, K. Kanonakis, C. Matrakidis, A. Drakos, J. Angelopoulos, and A. Lord, “Dynamic canon: A scalable multidomain core network,” IEEE Commun. Mag., vol. 46, no. 6, pp. 138–144, June2008.
[CrossRef]

J. D. Angelopoulos, K. Kanonakis, G. Koukouvakis, H. Leligou, C. Matrakidis, T. Orphanoudakis, and A. Stavdas, “An optical network architecture with distributed switching inside node clusters features improved loss, efficiency, and cost,” J. Lightwave Technol., vol. 25, pp. 1138–1146, 2007.
[CrossRef]

Leonardi, E.

P. Petracca, M. Melia, E. Leonardi, and F. Neri, “Design of WDM networks exploiting OTDM and light-splitters,” Lect. Notes Comput. Sci., vol. 2601, pp. 433–446, 2003.

Lord, A.

A. Stavdas, T. Orphanoudakis, H. Leligou, K. Kanonakis, C. Matrakidis, A. Drakos, J. Angelopoulos, and A. Lord, “Dynamic canon: A scalable multidomain core network,” IEEE Commun. Mag., vol. 46, no. 6, pp. 138–144, June2008.
[CrossRef]

Mannie, E.

E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” IETF RFC 3945, 2004.

Matrakidis, C.

A. Stavdas, T. Orphanoudakis, H. Leligou, K. Kanonakis, C. Matrakidis, A. Drakos, J. Angelopoulos, and A. Lord, “Dynamic canon: A scalable multidomain core network,” IEEE Commun. Mag., vol. 46, no. 6, pp. 138–144, June2008.
[CrossRef]

J. D. Angelopoulos, K. Kanonakis, G. Koukouvakis, H. Leligou, C. Matrakidis, T. Orphanoudakis, and A. Stavdas, “An optical network architecture with distributed switching inside node clusters features improved loss, efficiency, and cost,” J. Lightwave Technol., vol. 25, pp. 1138–1146, 2007.
[CrossRef]

Melia, M.

P. Petracca, M. Melia, E. Leonardi, and F. Neri, “Design of WDM networks exploiting OTDM and light-splitters,” Lect. Notes Comput. Sci., vol. 2601, pp. 433–446, 2003.

Menif, M.

Mitra, D.

I. Widjaja, I. Saniée, R. Giles, and D. Mitra, “Light core and intelligent edge for a flexible, thin-layered and cost effective optical transport network,” IEEE Commun. Mag., vol. 41, no. 5, pp. S30–S36, May2003.
[CrossRef]

Morea, A.

A. Morea, S. Spadaro, O. Rival, J. Perello, F. Agraz, and D. Verchere, “Power management of optoelectronic interfaces for dynamic optical networks,” in 37th European Conf. and Expo. on Optical Communications (ECOC), 2011.

Neri, F.

P. Pavon-Marino and F. Neri, “On the myths of optical burst switching,” IEEE Trans. Commun., vol. 59, no. 9, pp. 2574–2584, Sept.2011.
[CrossRef]

P. Petracca, M. Melia, E. Leonardi, and F. Neri, “Design of WDM networks exploiting OTDM and light-splitters,” Lect. Notes Comput. Sci., vol. 2601, pp. 433–446, 2003.

E. Bonetto, L. Chiaraviglio, D. Cuda, G. Castillo, and F. Neri, “Optical technologies can improve the energy efficiency of networks,” in Proc. of ECOC, Sept. 2009.

Niger, P.

C. Roger, J. Orozco, and P. Niger, “Optical access-metro network architecture based on passive access and burst-mode transmission,” in 7th Communication Networks and Services Research Conf., 2009.

Orozco, J.

C. Roger, J. Orozco, and P. Niger, “Optical access-metro network architecture based on passive access and burst-mode transmission,” in 7th Communication Networks and Services Research Conf., 2009.

Orphanoudakis, T.

A. Stavdas, T. Orphanoudakis, H. Leligou, K. Kanonakis, C. Matrakidis, A. Drakos, J. Angelopoulos, and A. Lord, “Dynamic canon: A scalable multidomain core network,” IEEE Commun. Mag., vol. 46, no. 6, pp. 138–144, June2008.
[CrossRef]

J. D. Angelopoulos, K. Kanonakis, G. Koukouvakis, H. Leligou, C. Matrakidis, T. Orphanoudakis, and A. Stavdas, “An optical network architecture with distributed switching inside node clusters features improved loss, efficiency, and cost,” J. Lightwave Technol., vol. 25, pp. 1138–1146, 2007.
[CrossRef]

Oueslati, S.

S. Oueslati and J. Roberts, “A new direction for quality of service: Flow aware networking,” in Proc of NGI, 2005.

A. Kortebi, S. Oueslati, and J. Roberts, “Implicit service differentiation using deficit round robin,” in Proc of ITC 19, 2005.

Painchaud, Y.

Pavon-Marino, P.

P. Pavon-Marino and F. Neri, “On the myths of optical burst switching,” IEEE Trans. Commun., vol. 59, no. 9, pp. 2574–2584, Sept.2011.
[CrossRef]

Perello, J.

A. Morea, S. Spadaro, O. Rival, J. Perello, F. Agraz, and D. Verchere, “Power management of optoelectronic interfaces for dynamic optical networks,” in 37th European Conf. and Expo. on Optical Communications (ECOC), 2011.

Petracca, P.

P. Petracca, M. Melia, E. Leonardi, and F. Neri, “Design of WDM networks exploiting OTDM and light-splitters,” Lect. Notes Comput. Sci., vol. 2601, pp. 433–446, 2003.

Pickavet, M.

W. V. Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photonic Network Commun., vol. 24, no. 2, pp. 86–102, 2012.
[CrossRef]

Raybo, G.

Rival, O.

A. Morea, S. Spadaro, O. Rival, J. Perello, F. Agraz, and D. Verchere, “Power management of optoelectronic interfaces for dynamic optical networks,” in 37th European Conf. and Expo. on Optical Communications (ECOC), 2011.

Robert, P.

P. Robert and J. Roberts, “A flow-aware MAC protocol for a passive optical metropolitan area network,” in Proc. of ITC 23, 2011 [Online]. Available: http://arxiv.org/abs/1102.3538v1.

Roberts, J.

P. Robert and J. Roberts, “A flow-aware MAC protocol for a passive optical metropolitan area network,” in Proc. of ITC 23, 2011 [Online]. Available: http://arxiv.org/abs/1102.3538v1.

D. Cuda, R. Indre, E. L. Rouzic, and J. Roberts, “Getting routers out of the core: Building an all-optical network with multipaths,” in Proc. of ONDM, 2012.

A. Kortebi, S. Oueslati, and J. Roberts, “Implicit service differentiation using deficit round robin,” in Proc of ITC 19, 2005.

S. Oueslati and J. Roberts, “A new direction for quality of service: Flow aware networking,” in Proc of NGI, 2005.

Roger, C.

C. Roger, J. Orozco, and P. Niger, “Optical access-metro network architecture based on passive access and burst-mode transmission,” in 7th Communication Networks and Services Research Conf., 2009.

Rouzic, E. L.

D. Cuda, R. Indre, E. L. Rouzic, and J. Roberts, “Getting routers out of the core: Building an all-optical network with multipaths,” in Proc. of ONDM, 2012.

Rusch, L. A.

Saniée, I.

I. Saniée and I. Widjaja, “Design and performance of randomized schedules for time-domain wavelength interleaved networks,” Bell Labs Tech. J., vol. 14, no. 2, pp. 97–111, 2009.
[CrossRef]

I. Widjaja, I. Saniée, R. Giles, and D. Mitra, “Light core and intelligent edge for a flexible, thin-layered and cost effective optical transport network,” IEEE Commun. Mag., vol. 41, no. 5, pp. S30–S36, May2003.
[CrossRef]

Sek, M.

Shreedhar, M.

M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,” Comput. Commun. Rev., vol. 25, no. 4, pp. 231–242, Oct.1995 [Online]. Available: http://doi.acm.org/10.1145/217391.217453.
[CrossRef]

Song, H.

Spadaro, S.

A. Morea, S. Spadaro, O. Rival, J. Perello, F. Agraz, and D. Verchere, “Power management of optoelectronic interfaces for dynamic optical networks,” in 37th European Conf. and Expo. on Optical Communications (ECOC), 2011.

Stavdas, A.

A. Stavdas, T. Orphanoudakis, H. Leligou, K. Kanonakis, C. Matrakidis, A. Drakos, J. Angelopoulos, and A. Lord, “Dynamic canon: A scalable multidomain core network,” IEEE Commun. Mag., vol. 46, no. 6, pp. 138–144, June2008.
[CrossRef]

J. D. Angelopoulos, K. Kanonakis, G. Koukouvakis, H. Leligou, C. Matrakidis, T. Orphanoudakis, and A. Stavdas, “An optical network architecture with distributed switching inside node clusters features improved loss, efficiency, and cost,” J. Lightwave Technol., vol. 25, pp. 1138–1146, 2007.
[CrossRef]

Su, C.

C. Su, L. K. Chen, and K. W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” J. Lightwave Technol., vol. 15, pp. 590–606, 1997.
[CrossRef]

Suvakovic, D.

D. Kilper, G. Atkinson, S. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communication networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar.–Apr.2011.
[CrossRef]

Tucker, R.

R. Tucker, “Green optical communications—Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 261–274, Mar.–Apr.2011.
[CrossRef]

Varghese, G.

M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,” Comput. Commun. Rev., vol. 25, no. 4, pp. 231–242, Oct.1995 [Online]. Available: http://doi.acm.org/10.1145/217391.217453.
[CrossRef]

Verchere, D.

A. Morea, S. Spadaro, O. Rival, J. Perello, F. Agraz, and D. Verchere, “Power management of optoelectronic interfaces for dynamic optical networks,” in 37th European Conf. and Expo. on Optical Communications (ECOC), 2011.

Vereecken, W.

W. V. Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photonic Network Commun., vol. 24, no. 2, pp. 86–102, 2012.
[CrossRef]

W. Vereecken and B. Lannoo, “Final report: Collection of data about energy consumption in network elements and subsystems,” TREND Deliverable FP7-ICT-257740/ D1.3, June2012.

Vetter, P.

D. Kilper, G. Atkinson, S. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communication networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar.–Apr.2011.
[CrossRef]

Wei, X.

Wellbrock, G.

Widjaja, I.

I. Saniée and I. Widjaja, “Design and performance of randomized schedules for time-domain wavelength interleaved networks,” Bell Labs Tech. J., vol. 14, no. 2, pp. 97–111, 2009.
[CrossRef]

I. Widjaja, I. Saniée, R. Giles, and D. Mitra, “Light core and intelligent edge for a flexible, thin-layered and cost effective optical transport network,” IEEE Commun. Mag., vol. 41, no. 5, pp. S30–S36, May2003.
[CrossRef]

Winzer, P.

Xia, T.

Yoo, S.

S. Yoo, “Energy efficiency in the future Internet: The role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 406–418, Mar.–Apr.2011.
[CrossRef]

J. Lightwave Technol. (1)

C. Su, L. K. Chen, and K. W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” J. Lightwave Technol., vol. 15, pp. 590–606, 1997.
[CrossRef]

Bell Labs Tech. J. (1)

I. Saniée and I. Widjaja, “Design and performance of randomized schedules for time-domain wavelength interleaved networks,” Bell Labs Tech. J., vol. 14, no. 2, pp. 97–111, 2009.
[CrossRef]

Comput. Commun. Rev. (1)

M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,” Comput. Commun. Rev., vol. 25, no. 4, pp. 231–242, Oct.1995 [Online]. Available: http://doi.acm.org/10.1145/217391.217453.
[CrossRef]

Discrete Event Dyn. Syst. (1)

T. Bonald, “Insensitive traffic models for communication networks,” Discrete Event Dyn. Syst., vol. 17, no. 3, pp. 405–421, Sept.2007, [Online]. Available: http://dx.doi.org/10.1007/s10626-007-0012-5.
[CrossRef]

IEEE Commun. Mag. (3)

N. Bouabdallah, “Sub-wavelength solutions for next-generation optical networks,” IEEE Commun. Mag., vol. 45, no. 8, pp. 36–43, Aug.2007.
[CrossRef]

I. Widjaja, I. Saniée, R. Giles, and D. Mitra, “Light core and intelligent edge for a flexible, thin-layered and cost effective optical transport network,” IEEE Commun. Mag., vol. 41, no. 5, pp. S30–S36, May2003.
[CrossRef]

A. Stavdas, T. Orphanoudakis, H. Leligou, K. Kanonakis, C. Matrakidis, A. Drakos, J. Angelopoulos, and A. Lord, “Dynamic canon: A scalable multidomain core network,” IEEE Commun. Mag., vol. 46, no. 6, pp. 138–144, June2008.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

S. Yoo, “Energy efficiency in the future Internet: The role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 406–418, Mar.–Apr.2011.
[CrossRef]

D. Kilper, G. Atkinson, S. Korotky, S. Goyal, P. Vetter, D. Suvakovic, and O. Blume, “Power trends in communication networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 275–284, Mar.–Apr.2011.
[CrossRef]

R. Tucker, “Green optical communications—Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 2, pp. 261–274, Mar.–Apr.2011.
[CrossRef]

IEEE Trans. Commun. (1)

P. Pavon-Marino and F. Neri, “On the myths of optical burst switching,” IEEE Trans. Commun., vol. 59, no. 9, pp. 2574–2584, Sept.2011.
[CrossRef]

J. Lightwave Technol. (4)

Lect. Notes Comput. Sci. (1)

P. Petracca, M. Melia, E. Leonardi, and F. Neri, “Design of WDM networks exploiting OTDM and light-splitters,” Lect. Notes Comput. Sci., vol. 2601, pp. 433–446, 2003.

Photonic Network Commun. (1)

W. V. Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photonic Network Commun., vol. 24, no. 2, pp. 86–102, 2012.
[CrossRef]

Proc. IEEE (1)

V. Chan, “Optical flow switching networks,” Proc. IEEE, vol. 100, no. 5, pp. 1079–1090, May2012.
[CrossRef]

Other (16)

D. Cuda, R. Indre, E. L. Rouzic, and J. Roberts, “Getting routers out of the core: Building an all-optical network with multipaths,” in Proc. of ONDM, 2012.

E. Bonetto, L. Chiaraviglio, D. Cuda, G. Castillo, and F. Neri, “Optical technologies can improve the energy efficiency of networks,” in Proc. of ECOC, Sept. 2009.

“SMART 2020: Enabling the low carbon economy in the information age,” Report of Global e-Sustainability Initiative, 2008.

I. Chlamtac and A. Gumaste, “Light-trails: A solution to IP centric communication in the optical domain,” Lect. Notes Comput. Sci., vol. 2601, pp. 634–644, 2003.

“Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification,” ITU-T Recommendation G.984.3, 2008.

“LAN/MAN CSMA/CDE (Ethernet) Access Method, Section 5,” IEEE Standard, 2008.

C. Roger, J. Orozco, and P. Niger, “Optical access-metro network architecture based on passive access and burst-mode transmission,” in 7th Communication Networks and Services Research Conf., 2009.

A. Kortebi, S. Oueslati, and J. Roberts, “Implicit service differentiation using deficit round robin,” in Proc of ITC 19, 2005.

“Spectral grids for WDM applications: DWDM frequency grid,” ITU Recommendation G.694.1, 2002 [Online]. Available: http://www.itu.int/rec/T-REC-G.694.1-200206-I/en.

S. Oueslati and J. Roberts, “A new direction for quality of service: Flow aware networking,” in Proc of NGI, 2005.

P. Robert and J. Roberts, “A flow-aware MAC protocol for a passive optical metropolitan area network,” in Proc. of ITC 23, 2011 [Online]. Available: http://arxiv.org/abs/1102.3538v1.

E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” IETF RFC 3945, 2004.

W. Vereecken and B. Lannoo, “Final report: Collection of data about energy consumption in network elements and subsystems,” TREND Deliverable FP7-ICT-257740/ D1.3, June2012.

A. Morea, S. Spadaro, O. Rival, J. Perello, F. Agraz, and D. Verchere, “Power management of optoelectronic interfaces for dynamic optical networks,” in 37th European Conf. and Expo. on Optical Communications (ECOC), 2011.

SUN-GE8100 Optical Line Terminal, Product Data Sheet [Online]. Available: http://suntelecommunication.cn/products/EPON.asp.

Alcatel-Lucent 1675 LambdaUnite Multi Service Switch, Product Data Sheet 2009 [Online]. Available: http://www.alcatel-lucent.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Multipoint-to-multipoint lightpaths: multipaths.

Fig. 2
Fig. 2

(Color online) IISP network: all nodes except edge nodes are duplicated.

Fig. 3
Fig. 3

(Color online) ISP network realized using multipaths showing a sample of paths.

Fig. 4
Fig. 4

(Color online) Burst timing highlighting transmission of n th burst on multipath j from source i.

Fig. 5
Fig. 5

(Color online) Example of burst interleaving: sources S 1 and S 2 share multipaths λ 1 and λ 2 producing the depicted activity at controller C; δ i is the one-way propagation time from source i to C.

Fig. 6
Fig. 6

(Color online) Mean throughput of backlogged flows for coordinated and non-coordinated allocations, N = 10 , M = 10 .

Fig. 7
Fig. 7

(Color online) Mean throughput of backlogged flows depending on backlogged traffic proportion, N = 60 , M = 16 .

Fig. 8
Fig. 8

(Color online) Mean packet delay of non-backlogged flows depending on backlogged traffic proportion, N = 60 , M = 16 .

Tables (2)

Tables Icon

Table I Router Power Consumption

Tables Icon

Table II Multipath Power Consumtion

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g j ( n + 1 ) = g j ( n ) + d j ( n ) + Δ g ,
s j ( n + 1 ) = g j ( n + 1 ) + Δ O  rtt i ,
Free ( i ) = s j ( n ) + d j ( n ) + Δ g .
t j ( n ) = { g j ( n ) if  A j ( g j ( n ) ) ϕ , time of next positive report if  A j ( g j ( n ) ) = ϕ ,
1 i N a i j < C , for 1 j M ,
1 j M a i j < x i C , for 1 i N .