Abstract

We propose a remote frequency stabilization technique for upstream signals in coexistence-type wavelength-division-multiplexed passive optical networks (WDM-PONs). It is based on dithering the transmission spectra of the demultiplexer to create a frequency monitor; supervisory frames that contain frequency information are transferred from the central office to the optical network unit through a downstream signal. To achieve a wide capture range for feedback control, the DEMUX is built as a new planer lightwave circuit that incorporates a Mach–Zehnder interferometer (MZI) and two arrayed waveguide gratings (AWGs). Experiments show that the deviation in laser-diode (LD) frequency can be suppressed to ±3.5GHz by using the supervisory frames with the fixed time interval of 2ms even though the LD frequency is expected to drift by ±25GHz against the ITU-T grid over its lifetime. An analytical estimation also shows that the proposed technique can effectively reduce the power budget required for the transceivers for upstream signal transmission with no significant decrease in the main signal bandwidth.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Davely, J. Kani, F. Bourgart, K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol. 44, no. 10, pp. 50–56, Oct. 2006.
    [CrossRef]
  2. K. McCammon, S. Wong, “Experimental validation of an access evolution strategy smooth FTTP service migration path,” in Optical Fiber Communications Conf., Anaheim, California, 2007, paper NThB3.
  3. H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, K. Iwatsuki, T. Imai, “A remote wavelength setting procedure based on wavelength sense random access (λ-RA) for power-splitter-based WDM-PON,” in ECOC’2006, Cannes, France, 2006, paper We3.P.157.
  4. H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in ECOC’2007, Berlin, Germany, 2006, paper PD3.4.
  5. H. Toba, K. Oda, K. Inoue, K. Nosu, T. Kitoh, “An optical FDM-based self-healing ring network employing arrayed waveguide grating filters and EDFA’s with level equalizers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 800–813, 1996.
    [CrossRef]
  6. J. Lee, Y. Chung, D. Digiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett., vol. 5, no. 12, pp. 1458–1461, 1993.
    [CrossRef]
  7. K. Akimoto, J. Kani, M. Teshima, K. Iwatsuki, “Gigabit WDM-PON system using spectrum-slicing technologies,” in Proc. ECOC’2003, Rimini, Italy, 2003, paper Th2.4.6.
  8. M. Feuer, M. Thomas, L. Lunardi, “Backreflection and loss in single-fiber loopback networks,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1106–1108, 2000.
    [CrossRef]
  9. M. Fujiwara, J. Kani, H. Suzuki, K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol. 24, no. 2, pp. 740–746, 2006.
    [CrossRef]
  10. ITU-T Recommendation G.983.3, “A broadband optical access system with increased service capability by wavelength allocation,” 2001.
  11. ITU-T Recommendation G.984.2, “Gigabit-capable passive optical networks (G-PON): physical media dependent (PMD) layer specification,” 2000.
  12. M. Fujiwara, H. Suzuki, T. Tanaka, N. Ooba, N. Yoshimoto, M. Tsubokawa, “Centralized frequency stabilization by dithering transmission spectra of PLC-type MZI-AWG for DWDM-PON,” in Proc. ECOC’2007, Berlin, Germany, 2007, paper 7.6.2.
  13. T. Tanaka, N. Ooba, S. Kamei, M. Fujiwara, H. Suzuki, T. Shibata, Y. Inoue, “Silica-based PLC demultiplexer with spectral modulation function for monitoring signal wavelengths,” Electron. Lett., vol. 43, no. 24, pp. 1377–1379, 2007.
    [CrossRef]

2007 (1)

T. Tanaka, N. Ooba, S. Kamei, M. Fujiwara, H. Suzuki, T. Shibata, Y. Inoue, “Silica-based PLC demultiplexer with spectral modulation function for monitoring signal wavelengths,” Electron. Lett., vol. 43, no. 24, pp. 1377–1379, 2007.
[CrossRef]

2006 (2)

R. Davely, J. Kani, F. Bourgart, K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol. 44, no. 10, pp. 50–56, Oct. 2006.
[CrossRef]

M. Fujiwara, J. Kani, H. Suzuki, K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol. 24, no. 2, pp. 740–746, 2006.
[CrossRef]

2000 (1)

M. Feuer, M. Thomas, L. Lunardi, “Backreflection and loss in single-fiber loopback networks,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1106–1108, 2000.
[CrossRef]

1996 (1)

H. Toba, K. Oda, K. Inoue, K. Nosu, T. Kitoh, “An optical FDM-based self-healing ring network employing arrayed waveguide grating filters and EDFA’s with level equalizers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 800–813, 1996.
[CrossRef]

1993 (1)

J. Lee, Y. Chung, D. Digiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett., vol. 5, no. 12, pp. 1458–1461, 1993.
[CrossRef]

Akimoto, K.

K. Akimoto, J. Kani, M. Teshima, K. Iwatsuki, “Gigabit WDM-PON system using spectrum-slicing technologies,” in Proc. ECOC’2003, Rimini, Italy, 2003, paper Th2.4.6.

Bourgart, F.

R. Davely, J. Kani, F. Bourgart, K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol. 44, no. 10, pp. 50–56, Oct. 2006.
[CrossRef]

Chung, Y.

J. Lee, Y. Chung, D. Digiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett., vol. 5, no. 12, pp. 1458–1461, 1993.
[CrossRef]

Davely, R.

R. Davely, J. Kani, F. Bourgart, K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol. 44, no. 10, pp. 50–56, Oct. 2006.
[CrossRef]

Digiovanni, D.

J. Lee, Y. Chung, D. Digiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett., vol. 5, no. 12, pp. 1458–1461, 1993.
[CrossRef]

Feuer, M.

M. Feuer, M. Thomas, L. Lunardi, “Backreflection and loss in single-fiber loopback networks,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1106–1108, 2000.
[CrossRef]

Fujiwara, M.

T. Tanaka, N. Ooba, S. Kamei, M. Fujiwara, H. Suzuki, T. Shibata, Y. Inoue, “Silica-based PLC demultiplexer with spectral modulation function for monitoring signal wavelengths,” Electron. Lett., vol. 43, no. 24, pp. 1377–1379, 2007.
[CrossRef]

M. Fujiwara, J. Kani, H. Suzuki, K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol. 24, no. 2, pp. 740–746, 2006.
[CrossRef]

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, K. Iwatsuki, T. Imai, “A remote wavelength setting procedure based on wavelength sense random access (λ-RA) for power-splitter-based WDM-PON,” in ECOC’2006, Cannes, France, 2006, paper We3.P.157.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in ECOC’2007, Berlin, Germany, 2006, paper PD3.4.

M. Fujiwara, H. Suzuki, T. Tanaka, N. Ooba, N. Yoshimoto, M. Tsubokawa, “Centralized frequency stabilization by dithering transmission spectra of PLC-type MZI-AWG for DWDM-PON,” in Proc. ECOC’2007, Berlin, Germany, 2007, paper 7.6.2.

Imai, T.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, K. Iwatsuki, T. Imai, “A remote wavelength setting procedure based on wavelength sense random access (λ-RA) for power-splitter-based WDM-PON,” in ECOC’2006, Cannes, France, 2006, paper We3.P.157.

Inoue, K.

H. Toba, K. Oda, K. Inoue, K. Nosu, T. Kitoh, “An optical FDM-based self-healing ring network employing arrayed waveguide grating filters and EDFA’s with level equalizers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 800–813, 1996.
[CrossRef]

Inoue, Y.

T. Tanaka, N. Ooba, S. Kamei, M. Fujiwara, H. Suzuki, T. Shibata, Y. Inoue, “Silica-based PLC demultiplexer with spectral modulation function for monitoring signal wavelengths,” Electron. Lett., vol. 43, no. 24, pp. 1377–1379, 2007.
[CrossRef]

Iwatsuki, K.

M. Fujiwara, J. Kani, H. Suzuki, K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol. 24, no. 2, pp. 740–746, 2006.
[CrossRef]

K. Akimoto, J. Kani, M. Teshima, K. Iwatsuki, “Gigabit WDM-PON system using spectrum-slicing technologies,” in Proc. ECOC’2003, Rimini, Italy, 2003, paper Th2.4.6.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, K. Iwatsuki, T. Imai, “A remote wavelength setting procedure based on wavelength sense random access (λ-RA) for power-splitter-based WDM-PON,” in ECOC’2006, Cannes, France, 2006, paper We3.P.157.

Kamei, S.

T. Tanaka, N. Ooba, S. Kamei, M. Fujiwara, H. Suzuki, T. Shibata, Y. Inoue, “Silica-based PLC demultiplexer with spectral modulation function for monitoring signal wavelengths,” Electron. Lett., vol. 43, no. 24, pp. 1377–1379, 2007.
[CrossRef]

Kani, J.

R. Davely, J. Kani, F. Bourgart, K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol. 44, no. 10, pp. 50–56, Oct. 2006.
[CrossRef]

M. Fujiwara, J. Kani, H. Suzuki, K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol. 24, no. 2, pp. 740–746, 2006.
[CrossRef]

K. Akimoto, J. Kani, M. Teshima, K. Iwatsuki, “Gigabit WDM-PON system using spectrum-slicing technologies,” in Proc. ECOC’2003, Rimini, Italy, 2003, paper Th2.4.6.

Kimura, H.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in ECOC’2007, Berlin, Germany, 2006, paper PD3.4.

Kitoh, T.

H. Toba, K. Oda, K. Inoue, K. Nosu, T. Kitoh, “An optical FDM-based self-healing ring network employing arrayed waveguide grating filters and EDFA’s with level equalizers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 800–813, 1996.
[CrossRef]

Lee, J.

J. Lee, Y. Chung, D. Digiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett., vol. 5, no. 12, pp. 1458–1461, 1993.
[CrossRef]

Lunardi, L.

M. Feuer, M. Thomas, L. Lunardi, “Backreflection and loss in single-fiber loopback networks,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1106–1108, 2000.
[CrossRef]

McCammon, K.

R. Davely, J. Kani, F. Bourgart, K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol. 44, no. 10, pp. 50–56, Oct. 2006.
[CrossRef]

K. McCammon, S. Wong, “Experimental validation of an access evolution strategy smooth FTTP service migration path,” in Optical Fiber Communications Conf., Anaheim, California, 2007, paper NThB3.

Nosu, K.

H. Toba, K. Oda, K. Inoue, K. Nosu, T. Kitoh, “An optical FDM-based self-healing ring network employing arrayed waveguide grating filters and EDFA’s with level equalizers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 800–813, 1996.
[CrossRef]

Oda, K.

H. Toba, K. Oda, K. Inoue, K. Nosu, T. Kitoh, “An optical FDM-based self-healing ring network employing arrayed waveguide grating filters and EDFA’s with level equalizers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 800–813, 1996.
[CrossRef]

Ooba, N.

T. Tanaka, N. Ooba, S. Kamei, M. Fujiwara, H. Suzuki, T. Shibata, Y. Inoue, “Silica-based PLC demultiplexer with spectral modulation function for monitoring signal wavelengths,” Electron. Lett., vol. 43, no. 24, pp. 1377–1379, 2007.
[CrossRef]

M. Fujiwara, H. Suzuki, T. Tanaka, N. Ooba, N. Yoshimoto, M. Tsubokawa, “Centralized frequency stabilization by dithering transmission spectra of PLC-type MZI-AWG for DWDM-PON,” in Proc. ECOC’2007, Berlin, Germany, 2007, paper 7.6.2.

Shibata, T.

T. Tanaka, N. Ooba, S. Kamei, M. Fujiwara, H. Suzuki, T. Shibata, Y. Inoue, “Silica-based PLC demultiplexer with spectral modulation function for monitoring signal wavelengths,” Electron. Lett., vol. 43, no. 24, pp. 1377–1379, 2007.
[CrossRef]

Suzuki, H.

T. Tanaka, N. Ooba, S. Kamei, M. Fujiwara, H. Suzuki, T. Shibata, Y. Inoue, “Silica-based PLC demultiplexer with spectral modulation function for monitoring signal wavelengths,” Electron. Lett., vol. 43, no. 24, pp. 1377–1379, 2007.
[CrossRef]

M. Fujiwara, J. Kani, H. Suzuki, K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol. 24, no. 2, pp. 740–746, 2006.
[CrossRef]

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, K. Iwatsuki, T. Imai, “A remote wavelength setting procedure based on wavelength sense random access (λ-RA) for power-splitter-based WDM-PON,” in ECOC’2006, Cannes, France, 2006, paper We3.P.157.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in ECOC’2007, Berlin, Germany, 2006, paper PD3.4.

M. Fujiwara, H. Suzuki, T. Tanaka, N. Ooba, N. Yoshimoto, M. Tsubokawa, “Centralized frequency stabilization by dithering transmission spectra of PLC-type MZI-AWG for DWDM-PON,” in Proc. ECOC’2007, Berlin, Germany, 2007, paper 7.6.2.

Suzuki, T.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in ECOC’2007, Berlin, Germany, 2006, paper PD3.4.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, K. Iwatsuki, T. Imai, “A remote wavelength setting procedure based on wavelength sense random access (λ-RA) for power-splitter-based WDM-PON,” in ECOC’2006, Cannes, France, 2006, paper We3.P.157.

Tanaka, T.

T. Tanaka, N. Ooba, S. Kamei, M. Fujiwara, H. Suzuki, T. Shibata, Y. Inoue, “Silica-based PLC demultiplexer with spectral modulation function for monitoring signal wavelengths,” Electron. Lett., vol. 43, no. 24, pp. 1377–1379, 2007.
[CrossRef]

M. Fujiwara, H. Suzuki, T. Tanaka, N. Ooba, N. Yoshimoto, M. Tsubokawa, “Centralized frequency stabilization by dithering transmission spectra of PLC-type MZI-AWG for DWDM-PON,” in Proc. ECOC’2007, Berlin, Germany, 2007, paper 7.6.2.

Teshima, M.

K. Akimoto, J. Kani, M. Teshima, K. Iwatsuki, “Gigabit WDM-PON system using spectrum-slicing technologies,” in Proc. ECOC’2003, Rimini, Italy, 2003, paper Th2.4.6.

Thomas, M.

M. Feuer, M. Thomas, L. Lunardi, “Backreflection and loss in single-fiber loopback networks,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1106–1108, 2000.
[CrossRef]

Toba, H.

H. Toba, K. Oda, K. Inoue, K. Nosu, T. Kitoh, “An optical FDM-based self-healing ring network employing arrayed waveguide grating filters and EDFA’s with level equalizers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 800–813, 1996.
[CrossRef]

Tsubokawa, M.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in ECOC’2007, Berlin, Germany, 2006, paper PD3.4.

M. Fujiwara, H. Suzuki, T. Tanaka, N. Ooba, N. Yoshimoto, M. Tsubokawa, “Centralized frequency stabilization by dithering transmission spectra of PLC-type MZI-AWG for DWDM-PON,” in Proc. ECOC’2007, Berlin, Germany, 2007, paper 7.6.2.

Wong, S.

K. McCammon, S. Wong, “Experimental validation of an access evolution strategy smooth FTTP service migration path,” in Optical Fiber Communications Conf., Anaheim, California, 2007, paper NThB3.

Yoshimoto, N.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, K. Iwatsuki, T. Imai, “A remote wavelength setting procedure based on wavelength sense random access (λ-RA) for power-splitter-based WDM-PON,” in ECOC’2006, Cannes, France, 2006, paper We3.P.157.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in ECOC’2007, Berlin, Germany, 2006, paper PD3.4.

M. Fujiwara, H. Suzuki, T. Tanaka, N. Ooba, N. Yoshimoto, M. Tsubokawa, “Centralized frequency stabilization by dithering transmission spectra of PLC-type MZI-AWG for DWDM-PON,” in Proc. ECOC’2007, Berlin, Germany, 2007, paper 7.6.2.

Electron. Lett. (1)

T. Tanaka, N. Ooba, S. Kamei, M. Fujiwara, H. Suzuki, T. Shibata, Y. Inoue, “Silica-based PLC demultiplexer with spectral modulation function for monitoring signal wavelengths,” Electron. Lett., vol. 43, no. 24, pp. 1377–1379, 2007.
[CrossRef]

IEEE Commun. Mag. (1)

R. Davely, J. Kani, F. Bourgart, K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol. 44, no. 10, pp. 50–56, Oct. 2006.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

H. Toba, K. Oda, K. Inoue, K. Nosu, T. Kitoh, “An optical FDM-based self-healing ring network employing arrayed waveguide grating filters and EDFA’s with level equalizers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 800–813, 1996.
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Lee, Y. Chung, D. Digiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett., vol. 5, no. 12, pp. 1458–1461, 1993.
[CrossRef]

M. Feuer, M. Thomas, L. Lunardi, “Backreflection and loss in single-fiber loopback networks,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1106–1108, 2000.
[CrossRef]

J. Lightwave Technol. (1)

Other (7)

ITU-T Recommendation G.983.3, “A broadband optical access system with increased service capability by wavelength allocation,” 2001.

ITU-T Recommendation G.984.2, “Gigabit-capable passive optical networks (G-PON): physical media dependent (PMD) layer specification,” 2000.

M. Fujiwara, H. Suzuki, T. Tanaka, N. Ooba, N. Yoshimoto, M. Tsubokawa, “Centralized frequency stabilization by dithering transmission spectra of PLC-type MZI-AWG for DWDM-PON,” in Proc. ECOC’2007, Berlin, Germany, 2007, paper 7.6.2.

K. McCammon, S. Wong, “Experimental validation of an access evolution strategy smooth FTTP service migration path,” in Optical Fiber Communications Conf., Anaheim, California, 2007, paper NThB3.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, K. Iwatsuki, T. Imai, “A remote wavelength setting procedure based on wavelength sense random access (λ-RA) for power-splitter-based WDM-PON,” in ECOC’2006, Cannes, France, 2006, paper We3.P.157.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in ECOC’2007, Berlin, Germany, 2006, paper PD3.4.

K. Akimoto, J. Kani, M. Teshima, K. Iwatsuki, “Gigabit WDM-PON system using spectrum-slicing technologies,” in Proc. ECOC’2003, Rimini, Italy, 2003, paper Th2.4.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Configuration of a coexistence-type WDM-PON.

Fig. 2
Fig. 2

Configuration of proposed frequency stabilization technique.

Fig. 3
Fig. 3

Transmittance profile of MZI-AWG. (a) MZI-AWG in which an MZI and an AWG are cascaded. (b) MZI-AWG in which an MZI and two AWGs are cascaded (only odd channels are shown).

Fig. 4
Fig. 4

Capture range and acceptable frequency drift against 3 dB bandwidth of the DEMUX (calculated).

Fig. 5
Fig. 5

Configuration of PLC-type MZI-AWG.

Fig. 6
Fig. 6

Measured time evolution of lights transmitted through the developed MZI-AWG for a relative LD frequency of 0 and 12.5 GHz .

Fig. 7
Fig. 7

Effect of increasing dithering amplitude. (a) Measured error signal against dithering amplitude. (b) Measured power penalty against dithering amplitude.

Fig. 8
Fig. 8

Proposed error signal transfer method through downstream signal. (a) Configuration in the CO. (b) Configuration in the ONU.

Fig. 9
Fig. 9

Relationship between the sampling period of analog-to-digital conversion and the time interval of the supervisory frame.

Fig. 10
Fig. 10

Bandwidth loss against the time interval of supervisory frame.

Fig. 11
Fig. 11

Experimental setup.

Fig. 12
Fig. 12

Error signals measured at the frequency monitor output and D/A converter output.

Fig. 13
Fig. 13

Measured time transition of the LD frequency with feedback control. (a) Using the frequency monitor output for the LD frequency of + 25 GHz . (b) Using the D/A converter output for the LD frequency of + 25 GHz ( T = 100 ms ) . (c) Using the D/A converter output for the LD frequency of + 25 GHz ( T = 50 ms ) . (d) Using the D/A converter output for the LD frequency of + 25 GHz ( T = 10 ms ) . (e) Using the D/A converter output for the LD frequency of + 25 GHz ( T = 2 ms ) . (f) Using the D/A converter output for the LD frequency of 25 GHz ( T = 2 ms ) .

Tables (2)

Tables Icon

Table 1 Power Budget Required for TRXs in Downstream Signal Transmission Estimated by Summing the Values in (a) the Loss of Transmission Line and (b) the Power Margin Required for TRXS

Tables Icon

Table 2 Power Budget Required for TRXs in Upstream Signal Transmission Estimated by Summing the Values in (a) Loss of Transmission Line and (b) Power Margin Required for TRXs

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P out = T ( f 0 ) P in + | d T d f | f = f 0 P in A cos ( 2 π f m t ) + ,
NOF IN = T Δ t ( L MS + L PRE + L IFG ) ,
NOF OUT = floor { T Δ t ( L S + L PRE + L IFG ) ( L MS + L PRE + L IFG ) } ,