Abstract

We propose and demonstrate a new optical double-sideband modulation technique that is immune to fiber chromatic dispersion and thus free of dispersion-induced RF power fading. The proposed modulation technique also provides a 3dB improvement of RF power compared with optical single-sideband modulation. The proposed modulation technique is analyzed in theory and simulation. It is shown that for a given fiber length an optimum electrical phase shift exists to completely cancel the dispersion-induced RF power fading. We verify this proposed modulation technique experimentally for a single-tone RF signal and for a multiband orthogonal frequency division multiplexing ultrawideband signal.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 10, pp. 1716–1724, Oct. 1996.
    [CrossRef]
  2. J. Yu, M. Huang, D. Qian, L. Chen, G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, Sept. 2008.
    [CrossRef]
  3. G. H. Smith, D. Novak, Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett., vol. 33, no. 1, pp. 74–75, Jan. 1997.
    [CrossRef]
  4. V. J. Urick, F. Bucholtz, “Compensation of arbitrary chromatic dispersion in analog links using a modulation-diversity receiver,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 893–895, Apr. 2005.
    [CrossRef]
  5. H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai., H. Long, M. I. Hayee, A. E. Willner, “Tunable RF-power-fading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 546–548, May 2000.
    [CrossRef]
  6. H. Sotobayashi, K. Kitayama, “Cancellation of the signal fading for 60 GHz subcarrier multiplexed optical DSB signal transmission in nondispersion shifted fiber using midway optical phase conjugation,” J. Lightwave Technol., vol. 17, no. 12, pp. 2488–2497, Dec. 1999.
    [CrossRef]
  7. H. Sotobayashi, K. Kitayama, “Effects of asymmetric power change on BER performance using midway optical phase conjugation for fading cancellation in 60 GHz millimetre-wave optical DSB signal transmission over 100 km non-dispersion-shifted fibre,” Electron. Lett., vol. 35, no. 12, pp. 992–993, June 1999.
    [CrossRef]
  8. B. Hraimel, M. O. Twati, K. Wu, “Closed-form dynamic range expression of dual-electrode Mach–Zehnder modulator in radio-over-fiber WDM system,” J. Lightwave Technol., vol. 24, no. 6, pp. 2380–2387, June 2006.
    [CrossRef]
  9. B. Hraimel, R. Kashyap, X. Zhang, J. Yao, K. Wu, “Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach–Zehnder external modulator,” Proc. SPIE, vol. 6343 II, paper 63432L, 2006.
    [CrossRef]
  10. M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio-over-fiber systems,” 2007 IEEE International Topical Meeting on Microwave Photonics, Victoria, BC, Canada, Oct. 3–5 2007, pp. 179–182.
    [CrossRef]
  11. M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Analysis of frequency quadrupling using a single Mach–Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10786–10802, July 2008.
    [CrossRef] [PubMed]
  12. M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10141–10151, July 2008.
    [CrossRef] [PubMed]
  13. A. Georgiadis, “Gain, phase imbalance, and phase noise effects on error vector magnitude,” IEEE Trans. Veh. Technol., vol. 53, no. 2, pp. 443–449, March 2004.
    [CrossRef]

2008

2006

B. Hraimel, M. O. Twati, K. Wu, “Closed-form dynamic range expression of dual-electrode Mach–Zehnder modulator in radio-over-fiber WDM system,” J. Lightwave Technol., vol. 24, no. 6, pp. 2380–2387, June 2006.
[CrossRef]

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, K. Wu, “Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach–Zehnder external modulator,” Proc. SPIE, vol. 6343 II, paper 63432L, 2006.
[CrossRef]

2005

V. J. Urick, F. Bucholtz, “Compensation of arbitrary chromatic dispersion in analog links using a modulation-diversity receiver,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 893–895, Apr. 2005.
[CrossRef]

2004

A. Georgiadis, “Gain, phase imbalance, and phase noise effects on error vector magnitude,” IEEE Trans. Veh. Technol., vol. 53, no. 2, pp. 443–449, March 2004.
[CrossRef]

2000

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai., H. Long, M. I. Hayee, A. E. Willner, “Tunable RF-power-fading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 546–548, May 2000.
[CrossRef]

1999

H. Sotobayashi, K. Kitayama, “Cancellation of the signal fading for 60 GHz subcarrier multiplexed optical DSB signal transmission in nondispersion shifted fiber using midway optical phase conjugation,” J. Lightwave Technol., vol. 17, no. 12, pp. 2488–2497, Dec. 1999.
[CrossRef]

H. Sotobayashi, K. Kitayama, “Effects of asymmetric power change on BER performance using midway optical phase conjugation for fading cancellation in 60 GHz millimetre-wave optical DSB signal transmission over 100 km non-dispersion-shifted fibre,” Electron. Lett., vol. 35, no. 12, pp. 992–993, June 1999.
[CrossRef]

1997

G. H. Smith, D. Novak, Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett., vol. 33, no. 1, pp. 74–75, Jan. 1997.
[CrossRef]

1996

U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 10, pp. 1716–1724, Oct. 1996.
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett., vol. 33, no. 1, pp. 74–75, Jan. 1997.
[CrossRef]

Bucholtz, F.

V. J. Urick, F. Bucholtz, “Compensation of arbitrary chromatic dispersion in analog links using a modulation-diversity receiver,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 893–895, Apr. 2005.
[CrossRef]

Cai., J.-X.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai., H. Long, M. I. Hayee, A. E. Willner, “Tunable RF-power-fading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 546–548, May 2000.
[CrossRef]

Cardakli, M. C.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai., H. Long, M. I. Hayee, A. E. Willner, “Tunable RF-power-fading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 546–548, May 2000.
[CrossRef]

Chang, G.

J. Yu, M. Huang, D. Qian, L. Chen, G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, Sept. 2008.
[CrossRef]

Chen, L.

J. Yu, M. Huang, D. Qian, L. Chen, G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, Sept. 2008.
[CrossRef]

Feng, K.-M.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai., H. Long, M. I. Hayee, A. E. Willner, “Tunable RF-power-fading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 546–548, May 2000.
[CrossRef]

Georgiadis, A.

A. Georgiadis, “Gain, phase imbalance, and phase noise effects on error vector magnitude,” IEEE Trans. Veh. Technol., vol. 53, no. 2, pp. 443–449, March 2004.
[CrossRef]

Gliese, U.

U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 10, pp. 1716–1724, Oct. 1996.
[CrossRef]

Hayee, M. I.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai., H. Long, M. I. Hayee, A. E. Willner, “Tunable RF-power-fading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 546–548, May 2000.
[CrossRef]

Hraimel, B.

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10141–10151, July 2008.
[CrossRef] [PubMed]

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Analysis of frequency quadrupling using a single Mach–Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10786–10802, July 2008.
[CrossRef] [PubMed]

B. Hraimel, M. O. Twati, K. Wu, “Closed-form dynamic range expression of dual-electrode Mach–Zehnder modulator in radio-over-fiber WDM system,” J. Lightwave Technol., vol. 24, no. 6, pp. 2380–2387, June 2006.
[CrossRef]

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, K. Wu, “Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach–Zehnder external modulator,” Proc. SPIE, vol. 6343 II, paper 63432L, 2006.
[CrossRef]

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio-over-fiber systems,” 2007 IEEE International Topical Meeting on Microwave Photonics, Victoria, BC, Canada, Oct. 3–5 2007, pp. 179–182.
[CrossRef]

Huang, M.

J. Yu, M. Huang, D. Qian, L. Chen, G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, Sept. 2008.
[CrossRef]

Kashyap, R.

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, K. Wu, “Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach–Zehnder external modulator,” Proc. SPIE, vol. 6343 II, paper 63432L, 2006.
[CrossRef]

Kitayama, K.

H. Sotobayashi, K. Kitayama, “Cancellation of the signal fading for 60 GHz subcarrier multiplexed optical DSB signal transmission in nondispersion shifted fiber using midway optical phase conjugation,” J. Lightwave Technol., vol. 17, no. 12, pp. 2488–2497, Dec. 1999.
[CrossRef]

H. Sotobayashi, K. Kitayama, “Effects of asymmetric power change on BER performance using midway optical phase conjugation for fading cancellation in 60 GHz millimetre-wave optical DSB signal transmission over 100 km non-dispersion-shifted fibre,” Electron. Lett., vol. 35, no. 12, pp. 992–993, June 1999.
[CrossRef]

Long, H.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai., H. Long, M. I. Hayee, A. E. Willner, “Tunable RF-power-fading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 546–548, May 2000.
[CrossRef]

Mohamed, M.

Nielsen, T. N.

U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 10, pp. 1716–1724, Oct. 1996.
[CrossRef]

Norskov, S.

U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 10, pp. 1716–1724, Oct. 1996.
[CrossRef]

Novak, D.

G. H. Smith, D. Novak, Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett., vol. 33, no. 1, pp. 74–75, Jan. 1997.
[CrossRef]

Qian, D.

J. Yu, M. Huang, D. Qian, L. Chen, G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, Sept. 2008.
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett., vol. 33, no. 1, pp. 74–75, Jan. 1997.
[CrossRef]

Sotobayashi, H.

H. Sotobayashi, K. Kitayama, “Cancellation of the signal fading for 60 GHz subcarrier multiplexed optical DSB signal transmission in nondispersion shifted fiber using midway optical phase conjugation,” J. Lightwave Technol., vol. 17, no. 12, pp. 2488–2497, Dec. 1999.
[CrossRef]

H. Sotobayashi, K. Kitayama, “Effects of asymmetric power change on BER performance using midway optical phase conjugation for fading cancellation in 60 GHz millimetre-wave optical DSB signal transmission over 100 km non-dispersion-shifted fibre,” Electron. Lett., vol. 35, no. 12, pp. 992–993, June 1999.
[CrossRef]

Sun, H.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai., H. Long, M. I. Hayee, A. E. Willner, “Tunable RF-power-fading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 546–548, May 2000.
[CrossRef]

Twati, M. O.

Urick, V. J.

V. J. Urick, F. Bucholtz, “Compensation of arbitrary chromatic dispersion in analog links using a modulation-diversity receiver,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 893–895, Apr. 2005.
[CrossRef]

Willner, A. E.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai., H. Long, M. I. Hayee, A. E. Willner, “Tunable RF-power-fading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 546–548, May 2000.
[CrossRef]

Wu, K.

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Analysis of frequency quadrupling using a single Mach–Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10786–10802, July 2008.
[CrossRef] [PubMed]

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10141–10151, July 2008.
[CrossRef] [PubMed]

B. Hraimel, M. O. Twati, K. Wu, “Closed-form dynamic range expression of dual-electrode Mach–Zehnder modulator in radio-over-fiber WDM system,” J. Lightwave Technol., vol. 24, no. 6, pp. 2380–2387, June 2006.
[CrossRef]

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, K. Wu, “Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach–Zehnder external modulator,” Proc. SPIE, vol. 6343 II, paper 63432L, 2006.
[CrossRef]

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio-over-fiber systems,” 2007 IEEE International Topical Meeting on Microwave Photonics, Victoria, BC, Canada, Oct. 3–5 2007, pp. 179–182.
[CrossRef]

Yao, J.

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, K. Wu, “Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach–Zehnder external modulator,” Proc. SPIE, vol. 6343 II, paper 63432L, 2006.
[CrossRef]

Yu, J.

J. Yu, M. Huang, D. Qian, L. Chen, G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, Sept. 2008.
[CrossRef]

Zhang, X.

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Analysis of frequency quadrupling using a single Mach–Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10786–10802, July 2008.
[CrossRef] [PubMed]

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10141–10151, July 2008.
[CrossRef] [PubMed]

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, K. Wu, “Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach–Zehnder external modulator,” Proc. SPIE, vol. 6343 II, paper 63432L, 2006.
[CrossRef]

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio-over-fiber systems,” 2007 IEEE International Topical Meeting on Microwave Photonics, Victoria, BC, Canada, Oct. 3–5 2007, pp. 179–182.
[CrossRef]

Electron. Lett.

G. H. Smith, D. Novak, Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett., vol. 33, no. 1, pp. 74–75, Jan. 1997.
[CrossRef]

H. Sotobayashi, K. Kitayama, “Effects of asymmetric power change on BER performance using midway optical phase conjugation for fading cancellation in 60 GHz millimetre-wave optical DSB signal transmission over 100 km non-dispersion-shifted fibre,” Electron. Lett., vol. 35, no. 12, pp. 992–993, June 1999.
[CrossRef]

IEEE Photon. Technol. Lett.

V. J. Urick, F. Bucholtz, “Compensation of arbitrary chromatic dispersion in analog links using a modulation-diversity receiver,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 893–895, Apr. 2005.
[CrossRef]

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai., H. Long, M. I. Hayee, A. E. Willner, “Tunable RF-power-fading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 546–548, May 2000.
[CrossRef]

J. Yu, M. Huang, D. Qian, L. Chen, G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, Sept. 2008.
[CrossRef]

IEEE Trans. Microwave Theory Tech.

U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 10, pp. 1716–1724, Oct. 1996.
[CrossRef]

IEEE Trans. Veh. Technol.

A. Georgiadis, “Gain, phase imbalance, and phase noise effects on error vector magnitude,” IEEE Trans. Veh. Technol., vol. 53, no. 2, pp. 443–449, March 2004.
[CrossRef]

J. Lightwave Technol.

Opt. Express

Proc. SPIE

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, K. Wu, “Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach–Zehnder external modulator,” Proc. SPIE, vol. 6343 II, paper 63432L, 2006.
[CrossRef]

Other

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio-over-fiber systems,” 2007 IEEE International Topical Meeting on Microwave Photonics, Victoria, BC, Canada, Oct. 3–5 2007, pp. 179–182.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

RoF link setup where the proposed modulator is used. SMF, single-mode fiber.

Fig. 2
Fig. 2

Calculated optimum electrical phase shift versus dispersion-induced phase shift θ 2 for different MZM extinction ratios (ER) of 15, 20, and 30 dB . A laser emitting at 1550 nm and a fiber dispersion of 16 ps ( nm km ) are used.

Fig. 3
Fig. 3

Calculated RF power efficiency improvement versus dispersion-induced phase shift θ 2 for different MZM extinction ratios (ER) of 15, 20, and 30 dB and when the optimum electrical phase shift φ is used. A laser emitting at 1550 nm and fiber dispersion of 16 ps ( nm km ) are used.

Fig. 4
Fig. 4

Simulated RF power versus electrical phase shift at different fiber lengths. A laser emitting at 1550 nm , f RF = 12 GHz , fiber dispersion of 16 ps ( nm km ) , and RF modulation index of 2 10 are used.

Fig. 5
Fig. 5

RF power improvement versus MZM extinction ratio at different fiber lengths obtained by using simulation (curves) and theory (symbols).

Fig. 6
Fig. 6

Q factor for OSSB and proposed ODSB versus received optical power for 12 GHz RF signal carrying non-return-to-zero data at a 625 Mbits s bit rate.

Fig. 7
Fig. 7

Eye diagram for OSSB: (a) back to back (B-T-B), (b) 52 km , and for proposed ODSB: (c) B-T-B, (d) 52 km . The received optical power is 15.9 and 17.4 dBm for OSSB and the proposed ODSB, respectively.

Fig. 8
Fig. 8

Experimental setup for proof of concept.

Fig. 9
Fig. 9

Measured optical spectrum using OSSB (solid curve), conventional ODSB (dashed curve), and our proposed ODSB (dots) modulation.

Fig. 10
Fig. 10

Measured electrical spectrum for (a) back-to-back transmission and (b) after 52 km of fiber transmission.

Fig. 11
Fig. 11

First three bands of MB-OFDM UWB wireless in the (a) frequency domain, (b) frequency-time domain, and (c) received constellation.

Fig. 12
Fig. 12

Measured EVM versus UWB input power for OSSB, conventional, and proposed ODSB for (a) back-to-back transmission and (b) 20 km of fiber transmission.

Fig. 13
Fig. 13

Measured constellation with minimum EVM at optimum input UWB power to MZM at back to back (B-T-B) for (a) OSSB, 0.16 dBm ; (b) proposed ODSB, 2.92 dBm ; and (c) conventional ODSB, 7.48 dBm ; and after 20 km for (d) OSSB, 0.16 dBm ; (e) proposed ODSB, 2.92 dBm ; and (f) conventional ODSB, 5.21 dBm .

Fig. 14
Fig. 14

Measured optical spectrum using OSSB modulation (dashed curve), and the conventional ODSB (solid curve) and our proposed ODSB (dots) modulation.

Fig. 15
Fig. 15

RF spectrum of the (a) transmitted and (b) received UWB signal for OSSB, conventional, and proposed ODSB for back-to-back transmission.

Fig. 16
Fig. 16

Received power versus transmitted power of the UWB MB-OFDM signal for OSSB and proposed ODSB for back-to-back transmission.

Tables (1)

Tables Icon

Table 1 Variation of Function η Versus φ

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

φ = 2 tan 1 [ ( 1 + δ 2 ) ( 1 δ 2 + 2 δ tan θ 2 ) ] ,
η = ( 1 + δ 2 + ( 1 δ 2 ) sin φ ) 2 1 + δ 4 + ( 1 δ 4 ) sin φ .
m sin ( ω RF t + θ + π 2 ) + m sin ( ω RF t + θ + φ ) = 2 m sin ( ω RF t + θ + φ 2 + π 4 ) sin ( φ 2 + π 4 ) ,
m sin ( ω RF t + θ ) + m sin ( ω RF t + θ + φ + π 2 ) = 2 m sin ( ω RF t + θ + φ 2 + π 4 ) cos ( φ 2 + π 4 ) .
E out ( t ) = t ff P in 1 + δ 2 e j ( ω c t + ϕ c ) [ e j 2 m sin ( ω RF t + θ + φ 2 + π 4 ) sin ( φ 2 + π 4 ) + j δ e j 2 m sin ( ω RF t + θ + φ 2 + π 4 ) cos ( φ 2 + π 4 ) ] ,
e j x sin ( Ω t ) = n = J n ( x ) e j n Ω t
E out ( t ) = n = E n ( t ) = t ff P in 1 + δ 2 e j ( ω c t + ϕ c ) n = { J n ( m sin ( φ 2 + π 4 ) ) + j δ J n ( m cos ( φ 2 + π 4 ) ) } × e j n ( ω RF t + θ + φ 2 + π 4 ) .
I ω RF ( t ) = 1 2 R ( E 0 * ( t ) E 1 ( t ) e j ( 1 2 β 2 L ω RF 2 + β 1 L ω RF ) + E 1 * ( t ) E 0 ( t ) e j ( 1 2 β 2 L ω RF 2 β 1 L ω RF ) ) = 1 2 R P in t ff e α L 1 + δ 2 ( Z Z * ) e j ( φ 2 + π 4 ) e j ( ω RF ( t β 1 L ) + θ ) = R P in t ff e α L 1 + δ 2 Im ( Z ) e j ( φ 2 + 3 π 4 ) e j ( ω RF ( t β 1 L ) + θ ) ,
Z = [ J 0 ( 2 m sin ( φ 2 + π 4 ) ) j δ J 0 ( 2 m cos ( φ 2 + π 4 ) ) ] × [ J 1 ( 2 m sin ( φ 2 + π 4 ) ) + j δ J 1 ( 2 m cos ( φ 2 + π 4 ) ) ] e j θ 2 = A 2 + B 2 e j ( θ 2 + ψ ) ,
θ 2 = 1 2 β 2 L ω RF 2 ,
A = [ J 0 ( 2 m sin ( φ 2 + π 4 ) ) J 1 ( 2 m sin ( φ 2 + π 4 ) ) + δ 2 J 0 ( 2 m cos ( φ 2 + π 4 ) ) J 1 ( 2 m cos ( φ 2 + π 4 ) ) ] ,
B = δ [ J 0 ( 2 m sin ( φ 2 + π 4 ) ) J 1 ( 2 m cos ( φ 2 + π 4 ) ) J 0 ( 2 m cos ( φ 2 + π 4 ) ) J 1 ( 2 m sin ( φ 2 + π 4 ) ) ] ,
ψ = tan 1 ( B A ) .
I ω RF ( t ) = R P in t ff e α L 1 + δ 2 A 2 + B 2 sin ( ψ + θ 2 ) × e j ( ω RF ( t β 1 L ) + θ + φ 2 + 3 π 4 ) .
cos ( ψ + θ 2 ) = 0 .
tan ψ = B A = 1 tan θ 2 .
[ ( 1 + δ 2 ) + ( 1 δ 2 ) tan ( φ 2 ) ] 2 δ tan ( φ 2 ) = tan θ 2 ,
φ = 2 tan 1 [ ( 1 + δ 2 ) ( 1 δ 2 + 2 δ tan θ 2 ) ] .
A 2 + B 2 = ( 1 + tan 2 θ 2 ) B 2 = 2 m 2 δ 2 sin 2 ( φ 2 ) ( 1 + tan 2 θ 2 ) .
A 2 + B 2 = 1 2 m 2 sin 2 ( φ 2 ) × [ ( 1 + δ 2 ) 2 ( 1 + tan 2 ( φ 2 ) ) + 2 ( 1 δ 4 ) tan ( φ 2 ) ] tan 2 ( φ 2 )
= 1 2 ( 1 + δ 2 ) 2 m 2 [ 1 + 1 δ 2 1 + δ 2 sin φ ] .
| I ω RF | = 1 2 P in R t ff e α L m F ( φ ) ,
F ( φ ) = 1 + 1 δ 2 1 + δ 2 sin φ
P ω RF = 2 | I ω RF | 2 R L = 1 4 ( P in R t ff e α L π m RF ) 2 F ( φ ) R L ,
E out ( t ) = P in t ff 1 + δ 2 e j ( ω c t + ϕ c ) × { e j 2 m sin ( ω RF t + θ ) + δ e j [ 2 m sin ( ω RF t + θ + π 2 ) + π 2 ] } = P in t ff 1 + δ 2 e j ( ω c t + ϕ c ) n = ( 1 + j n + 1 δ ) J n ( 2 m ) e j n ( ω RF t + θ ) .
E link ( t ) = e α L 2 n = E n ( t ) e j ( 1 2 β 2 L ( n ω RF ) 2 + β 1 L n ω RF ) ,
E n ( t ) = P in t ff 1 + δ 2 ( 1 + j n + 1 δ ) J n ( 2 m ) e j n ( ω RF t + θ ) e j ( ω c t + ϕ c ) .
I ω RF ( t ) = 1 2 R e α L [ E 0 ( t ) E 1 * ( t ) e j θ 2 + E 1 ( t ) E 0 * ( t ) e j θ 2 ] = R P in t ff e α L 2 ( 1 + δ 2 ) J 0 ( 2 m ) J 1 ( 2 m ) × [ ( 1 δ ) ( 1 j δ ) e j θ 2 ( 1 + δ ) ( 1 + j δ ) e j θ 2 ] e j ( ω RF ( t β 1 L ) + θ ) .
| I ω RF | = R P in t ff e α L 1 + δ 2 m 2 2 C ,
C = 2 ( 1 + δ 2 ) 2 2 ( 1 δ 2 ) [ ( 1 δ 2 ) cos 2 θ 2 + 2 δ sin 2 θ 2 ] .
cos 2 θ = 1 tan 2 θ 1 + tan 2 θ ,
sin 2 θ = 2 tan θ 1 + tan 2 θ ,
C = 2 ( 1 + δ 2 ) 2 + 2 ( 1 δ 2 ) × [ ( 1 δ 2 ) ( 1 + tan 2 ( φ 2 ) ) + 2 ( 1 + δ 2 ) tan ( φ 2 ) ] ( 1 + δ 2 ) 2 ( 1 + tan 2 ( φ 2 ) ) + 2 ( 1 δ 4 ) tan ( φ 2 ) = 2 ( 1 + δ 2 ) 2 + 2 ( 1 δ 2 ) [ ( 1 δ 2 ) + ( 1 + δ 2 ) sin φ ] ( 1 + δ 2 ) 2 + ( 1 δ 4 ) sin φ .
| I ω RF | = 1 2 P in R t ff e α L m 1 + ( 1 δ 2 1 + δ 2 ) 2 + 2 ( 1 δ 2 1 + δ 2 ) sin φ 1 + ( 1 δ 2 1 + δ 2 ) sin φ ,
P ω RF SSB = 2 | I ω RF | 2 R L = 1 4 ( P in R t ff e α L G π m RF ) 2 G ( φ ) R L ,
G ( φ ) = 1 2 ( 1 + ( 1 δ 2 1 + δ 2 ) 2 + 2 ( 1 δ 2 1 + δ 2 ) sin φ 1 + ( 1 δ 2 1 + δ 2 ) sin φ ) .
η = P ω RF P ω RF SSB = F ( φ ) G ( φ ) = ( 1 + δ 2 + ( 1 δ 2 ) sin φ ) 2 1 + δ 4 + ( 1 δ 4 ) sin φ .