Quantum simulations in integrated photonics

Chris Sparrow1, Stefano Paesani1, Nicola Maraviglia1, Raffaele Santagati1,
Caterina Vigliar1, Alex Neville1, Chris Harrold1, Nicholas J. Russell1,
Jeremy O’Brien1, David Tew1, Nobuyuki Matsuda2, Toshikazu Hashimoto3,
Enrique Martín-López4, Jacques Carolan5, Yogesh Joglekar6,
and Anthony Laing1

1Quantum Engineering and Technology Labs, School of Physics and Department of Electrical and Electronic Engineering, University of Bristol, BS8 1UB, UK
2NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
3NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
4Nokia Research Centre, Broers Building, 21 J.J. Thomson Avenue, Cambridge, CB3 0FA, UK
5Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
6Department of Physics, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, USA

Abstract: Here we report experimental demonstrations of quantum photonics as a simulation platform for molecular quantum dynamical behaviour. © 2019 The Author(s)

Modelling the dynamics of quantum mechanical systems, including molecules, is generally intractable to classical computational techniques. Such computational overheads may be overcome by utilising quantum simulation techniques, in which a well-controlled quantum system is programmed to mimic the quantum behaviour of another.

Recent progress in integrated photonics has seen the advent of high fidelity on-chip processing of photonic quantum information and fully programmable circuitry to establish devices that are universal for linear optics. Progress has also been made in the integration of photon sources and single photon detection. Together with high speed and low loss photonic switches, a versatile class of photonic quantum simulators becomes a realistic prospect. It is hoped that the demands on error correction for specialised quantum simulators could be much lower than those for universal digital quantum simulators.

Here we report experimental demonstrations of quantum photonics as a simulation platform for molecular quantum dynamical behaviour. Using the analogy of optical modes in miniaturised waveguides for vibrational modes and single photons for quantised vibrational excitations, we show how to simulate the dynamics of any molecular system in the standard harmonic approximation model. Progress in integrated quantum photonics is also discussed.