TeraHertz Photonics for Communications

A. J. Seeds
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom.
e-mail: a.seeds@ucl.ac.uk

Outline

- Bandwidth Requirements
- THz Spectrum
- Predecessor Systems- Wireless Over Fibre
- Architectures
- Heterodyne Signal Generation
- Uni-Travelling Carrier Photo-Detectors as THz Sources
- Heterodyne System Demonstration
- Coherent Signal Generation- Injection Locking, Optical Phase Lock Loop, Optical Injection Phase Lock Loop
- Coherent System Demonstrations
- Conclusion
Bandwidth Requirements

D. Kilper, Alcatel-Lucent (presented at the 2011 OIDA aggregation network workshop)

Path Loss

\[L_F = (4\pi\lambda/R)^2 \]

where \(\lambda \) : wavelength; \(R \) : range

\[L_T(dB) = 92.4 + 20 \log_{10}(f) + 20 \log_{10}(R) \]

\[L_T(dB) = 92.4 + 20 \log_{10}(f) + 20 \log_{10}(R) + k R \]

where \(f \) : frequency (GHz); \(R \) : range (km);
\(k \) : atmospheric attenuation (dB/km)

eg 100m path; 350 GHz; Sea Level 7.5 g/m³ water

\[L_F = 123 \text{ dB}; L_T = 124 \text{ dB} \]
THz Atmospheric Transmission

- Large available unallocated bandwidth above 300 GHz - 30 times the entire allocated RF spectrum
- For short range systems water absorption penalty is small at the lower THz frequencies

Advantages of THz over Optical Transmission

- For wireless point to point systems fog is a major issue for optical wavelength.
- Rain losses are similar for optics and THz
- At 300 GHz carrier frequency the attenuation from fog drops by 2 orders of magnitude compared to the optical window.

Outline

- Bandwidth Requirements
- THz Spectrum
- Predecessor Systems- Wireless Over Fibre
 - Architectures
 - Heterodyne Signal Generation
 - Uni-Traveling Carrier Photo-Detectors as THz Sources
 - Heterodyne System Demonstration
 - Coherent Signal Generation- Injection Locking, Optical Phase Lock Loop, Optical Injection Phase Lock Loop
 - Coherent System Demonstrations
- Conclusion

Wireless Over Fibre Systems

16 Channels Transmit/Receive

CENTRAL SITE BASE STATION

1.3\,\mu m Laser
PIN Photodiode
PA
Circ.
Antenna

1.3\,\mu m Laser
LNA

Copyright © 2014 UCL
Commercial In-Building Wireless over Fibre

World-wide Distributed Antenna System Market Size: $1.9 Billion in 2012 - Telecomlead

Copyright © 2014 UCL

Wideband Distribution Architecture

Copyright © 2014 UCL
Wireless over PON - Systems Concept

- Wireless overlay on Passive Optical Network (PON)
- Centralised base station functions
- Remote units on buildings, not on hilltops
- Cost-shared backhaul
- Greatly enhanced wireless data rates
- Greener power budget

Copyright © 2014 UCL

Wireless over PON

- 50 m path loss 93 dB
- 100 Mb/s requires base station EIRP of 20 mW for 10dB margin
- The hilltop base station alternative would require an EIRP of 3kW

Copyright © 2014 UCL
Outline

- Bandwidth Requirements
- THz Spectrum
- Predecessor Systems - Wireless Over Fibre

Architectures

- Heterodyne Signal Generation
- Uni-Travelling Carrier Photo-Detectors as THz Sources
- Heterodyne System Demonstration
- Coherent Signal Generation - Injection Locking, Optical Phase Lock Loop, Optical Injection Phase Lock Loop
- Coherent System Demonstrations
- Conclusion

THz over Fibre - Systems Concept

- THz wireless provides high bandwidth capacity.
- Limited propagation distance allows well defined microcells and frequency reuse.
- Inexpensive THz equipment is essential.
- Base stations and central station are connected by low-loss optical fibre.
- Possible applications are:
 - High resolution mobile multimedia services
 - Wireless Video Distribution Systems
 - Wireless Local Area Networks (WLANs)
Assumptions:
- Carrier frequency: 350 GHz
- Transmitted power: -10 dBm
- Absorption loss: negligible for short range
- Antenna gain: 40 dBi (Tx and Rx)
- Down-conversion loss: 20 dB
- LNA noise figure: 3 dB
- Data rate: 10 Gb/s (20 GHz IF b/w)
- SNR required: 10 dB

Transmission distance, \(R = 17 \) m
- Free-space path loss = \((4\pi R f / c)^2 = 108 \) dB

Short-range links possible with high antenna gain or with increased transmitter power

Outline
- Bandwidth Requirements
- THz Spectrum
- Predecessor Systems- Wireless Over Fibre
- Architectures
- Heterodyne Signal Generation
- Uni-Travelling Carrier Photo-Detectors as THz Sources
- Heterodyne System Demonstration
- Coherent Signal Generation- Injection Locking, Optical Phase Lock Loop, Optical Injection Phase Lock Loop
- Coherent System Demonstrations
- Conclusion
Current THz Technology

- Currently most THz systems use femtosecond pulses from mode-locked lasers and photoconductive switches for signal generation
- Good solution for time and depth resolved imaging over wide frequency spans
- Power consumption is in the kW range
- Spectral purity of the THz signal is limited by laser jitter
- The cost and size of most short pulse systems is also a limitation
- Communications and related applications require the use of single frequency sources, often with high spectral purity
- Recent progress in photonics for optical communications can enable compact, power efficient, coherent THz systems

Heterodyne THz Generation

- Semiconductor diode lasers- power efficient
- Working at 1550nm- advantages due to well developed telecomms. technologies
- Laser linewidths sum in the photomixer
- This results in a tuneable source with MHz linewidth (typical semiconductor laser linewidth 2 MHz)
Heterodyne THz Link

www.iphos-project.eu

G. Carpintero, UC3M

Optical mmW Signal Source

Carrier Generation → Data Modulation

Δν (f_c)

λ

Wireless Transmitter

High Speed Photodiode → PA

Δν (f_c)

λ

Wireless Receiver

SBD

Copyright © 2014 UCL

Carrier Generation

www.iphos-project.eu

F. Van-Dijk, III-V Lab.; E. Bente, TuE

Optical mmW Signal Source

Carrier Generation → Data Modulation

Δν (f_c)

λ

Dual DFB based

Arrayed Waveguide Grating based

MMIRs

Output SOA

Arrayed Waveguide Grating based

SOAs

Phase shifters

Photonic Integrated Circuit-based dual wavelength sources based on two different approaches:

• Monolithic integration of a dual DFB PIC
• Arrayed Waveguide Grating Laser

Copyright © 2014 UCL
Dual Laser Integrated Heterodyne Source

www.iphos-project.eu

Microscopic photo of the device

Dual DFB approach advantages are:
- Wide continuous tuning range
- Fabrication process compatible with Photodiodes

F. Van Dijk et al,
III-V Lab

AWG Dual-\(\lambda\) Source

www.iphos-project.eu

Dual AWG approach has the following advantages:
- Stable beat note (Optical Linewidth \(<\ 130\ kHz\ and\ Electrical\ beat\ linewidth\ \(<\ 250\ kHz\))
- Fixed wavelength spacing by AWG channel separation (100 GHz)
- AWG channel spacing spread due to fabrication tolerances

Packaged Dual Laser Integrated Source

These Photonic Integrated Circuits can be packaged to form compact dual-κ sources:

- TEC controlled
- DC bias inputs in one connection
- RF modulation on SMA access
- Fiber output for the modulated dual wavelength signal
- Submounts to tilt the PIC for optimum coupling from angled waveguides to reduce reflections at facets

Outline

- Bandwidth Requirements
- THz Spectrum
- Predecessor Systems- Wireless Over Fibre
- Architectures
- Heterodyne Signal Generation
- **Uni-Travelling Carrier Photo-Detectors as THz Sources**
 - Heterodyne System Demonstration
 - Coherent Signal Generation- Injection Locking, Optical Phase Lock Loop, Optical Injection Phase Lock Loop
 - Coherent System Demonstrations
- Conclusion
Uni-Travelling Carrier Photodiode

- The structure was designed with a depletion layer thickness such that the carrier transit limited 3 dB bandwidth was about 340 GHz.

- The diffusion barrier was sufficiently doped to be used as a contact layer.

- The device was designed such that its capacitance and series resistance will allow it to be used in a travelling wave design.

300-GHz Band Modified UTC-PD

T. Nagatsuma, NTT/Osaka Univ.

Band diagram

- Refracting facet structure: edge illumination

Copyright © 2014 UCL
Wide Bandwidth & High Power

T. Nagatsuma, NTT/Osaka Univ.

Maximum power: > 500 µW @ 20 mA
3-dB bandwidth

Faster transport – Hot electrons in the depletion region, no hole transport.

Travelling Wave UTC Photodiode

The device is a combination of:

Uni – Travelling Carrier Photodiode

Travelling Wave Photodiode

Travelling Wave Effects can achieve better response at high frequencies.
Transmission Line Model

- “Slow-wave” propagation.
- Photocurrent is modelled as a distributed current source.
- Circuit elements are distributed over the length of the device.

Electrical Design Parameters

- Characteristic impedance approaches 50 Ω for narrow ridge devices (<2 µm).
- Attenuation becomes limiting factor only at very high frequencies.
- Velocity matching is achieved only at high frequencies.
Optimisation of the TW-UTC-PD

- Transmission Line Model combined with carrier transport was used to predict the frequency response of a 4×15 µm² TW-UTC-PD.

- The device is compared to a vertically illuminated UTC-PD and a p-i-n TW-PD with the same active area dimensions and intrinsic layer thickness.

Millimetre-wave Generation

- The output power from CPW-integrated devices was measured in the G-Band (140 – 220 GHz) using the same optical heterodyne generation system.

- The experimental arrangement included a G-Band probe, a 20 dBi gain horn antenna and the Thomas Keating power meter.

- The device generated record levels of power from a photomixer in the mm-wave range with 1 mW at 200 GHz.
Integration with Antennas

- TW-UTC devices integrated with antennas
- Antennas made of 800 nm thick sputtered gold
- Three types of antenna were used:
 - A resonant antenna (dipole) with narrow peak response around 450 GHz and 900 GHz
 - A bow tie broadband antenna with a peak response around 800 GHz (picture)
 - A log-periodic broadband antenna (picture)

Generation of Tuneable THz Signal

- Measured power generated over the frequency range of 140GHz to 300GHz using a PD with a partially doped absorber layer with an integrated bow-tie antenna
- Optical power at the PD was 15dBm and photocurrent was 3mA
- Power was measured using a calibrated large area Thomas Keating power meter
Broadband emission up to 1.5 THz using bow-tie and log-periodic antennas mounted on a hyper-hemispherical High Resistivity Si lens.
Continuous Wave THz Generation

- The devices achieved the highest output power ever recorded from a continuous wave photomixing source in this frequency range.

<table>
<thead>
<tr>
<th>Antenna</th>
<th>frequency (GHz)</th>
<th>Power (µW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-periodic</td>
<td>700</td>
<td>39</td>
</tr>
<tr>
<td>Bow-Tie</td>
<td>408</td>
<td>75</td>
</tr>
<tr>
<td>Resonant</td>
<td>457, 914</td>
<td>148, 24</td>
</tr>
</tbody>
</table>

THz Emission

- Broadband antenna-integrated devices showed high output power up to 1.5 THz.
- Packaged devices were successfully developed without any degradation in the frequency response.
Performance Summary

 Responsivity (A/W) vs. 3 dB response frequency (GHz)

UCL TW-UTC-PD
NTT UTC-PD
III-V MUTC
Virginia MUTC
Duisburg partially doped
Commercial p-i-n

Performance Summary

 RF extracted power (dBm) vs. Frequency (GHz)

UCL TW-UTC-PD
NTT UTC-PD
III-V MUTC
Virginia MUTC
Duisburg partially doped
Commercial p-i-n

Copyright © 2014 UCL
- Record levels of Terahertz figure of merit were achieved up to 1.5 THz.

Vitaly Rymanov, Andreas Stöhr, Sebastian Dülme, and Tolga Tekin, "Triple transit region photodiodes (TTR-PDs) providing high millimeter wave output power", submitted to Optica Express in December 2013
Enhancing Output Power by Power Combining

Chip Structure

1 mW @ 300 GHz @ 18 mA per PD

H. J. Song et al., 2012 Asia-Pacific Microwave Photonics Conference.
K. Arakawa et al., ibid.

T. Nagatsuma, Osaka Univ.

Commercially Available Devices from NEL

Antenna-integrated 1550 nm 6 mA

W-band F-band D-band

T. Nagatsuma, Osaka Univ.
Packaged THz Photodiode

Outline

- Bandwidth Requirements
- THz Spectrum
- Predecessor Systems - Wireless Over Fibre
- Architectures
- Heterodyne Signal Generation
- Uni- Travelling Carrier Photo-Detectors as THz Sources

Heterodyne System Demonstration

- Coherent Signal Generation - Injection Locking, Optical Phase Lock Loop, Optical Injection Phase Lock Loop
- Coherent System Demonstrations
- Conclusion
Monolithic Transmitter

Optical mmW Signal Source On-a-Chip

- Carrier Generation
- Data Modulation
- High Speed Photodiode

To achieve low propagation loss in the passive sections.

To design high-speed PDs despite increased series resistance.

Copyright © 2014 UCL
Monolithic Transmitter

DFB lasers | Dual wavelength generation
SOAs | Data modulation
MMI | Wavelength combiner
PD | O/E conversion

Transmission System Demonstration

35Lab Y-coupled DFB laser

UCL packaged UTC PD source

Schottky Barrier Diode sub-harmonic mixer

Copyright © 2014 UCL
Transmission Result

D = 27 mm; 1 Gb/s OOK; 2^7-1 PRBS; 1000 bits; IF = 2.5 GHz; UTC: 2.0 mA, 2.0 V, 17°C
Envelope detection with 0.7 GHz Bessel5 baseband filter (offline processing)

Copyright © 2014 UCL

Extreme-bandwidth 300-GHz Wireless Link

T. Nagatsuma, Osaka Univ.
SISO Transmission at 300 GHz

40 Gbit/s

Bit Error Rate

Photocurrent (mA)

1E-12
1E-4
1E-6
1E-8
1E-10
1E-12

5.0
6.0
7.0
8.0

Polarization MUX Transmission at 300 GHz

T. Nagatsuma, Osaka Univ.
THz Wire-grid Polarizer

Extinction Ratio: >20 dB

Transmittance & Reflectance [dB]

Angle [°]

Transmitter Power (µW)

Bit Error Rate

24 Gbit/s x 2

48 Gbit/s Transmission

Ch.1: 24 Gbit/

Ch.2: 24 Gbit/

Receiver BW: 19/15 GHz @Ch.1/2

Transmitter Power (µW)
Data Rate vs. Carrier Frequency

Use of Higher Carrier Frequencies: 600-GHz Band

Usable BW: 270 GHz → 160 Gbit/s, >105 Ch. HDTV
Coherent THz Synthesis

- The first part of the system is the reference source which is an Optical Frequency Comb Generator (OFCG) offering a set of optical frequencies over a span of >2 THz.
- The OFCG output is then sent to two Optical Phase Lock Loop (OPLL) active filters to extract two comb lines while retaining their phase relation.
- These two lines are then combined to generate an highly pure heterodyne signal through a high speed photodetector and the resulting THz signal is emitted through an antenna.
The first part of the system is the reference source which is an Optical Frequency Comb Generator (OFCG) offering a set of optical frequencies over a span of >2 THz.

The OFCG output is then sent to two Optical Phase Lock Loop (OPLL) active filters to extract two comb lines while retaining their phase relation.

These two lines are then combined to generate an highly pure heterodyne signal through a high speed photodetector and the resulting THz signal is emitted through an antenna.

For low THz frequencies source a modest span suffices.

A simple approach is to use a phase modulated laser.

This can be combined with a resonator to extend the span over 4 THz in a monolithic package.
Monolithic Mode Locked Comb Source

- Quantum dash monolithic laser
- Locked to a 24.6 GHz source
- Span of 1.6 THz
- Resulting beat linewidth <1kHz

F. Van Dijk et al, III-V Lab

Phase-Locked Mode-Locked Lasers

- >2 THz MLL envelope demonstrated for MLL with integrated gain flattening filter (GFF)
- Linear and ring actively locked MLLs fabricated with integrated OPLLs for comb-line stabilization

Copyright © 2014 UCL
Phase-locked Synthesiser

- The first part of the system is the reference source which is an Optical Frequency Comb Generator (OFCG) offering a set of optical frequencies over a span of >2 THz.
- The OFCG output is then sent to two Optical Phase Lock Loop (OPLL) active filters to extract two comb lines while retaining their phase relation.
- These two lines are then combined to generate a highly pure heterodyne signal through a high speed photodetector and the resulting THz signal is emitted through an antenna.

Optical Injection Locking

- A simple locking technique is to inject coherent photons within a laser cavity.
- Above a certain threshold the slave source will be fully locked to the master through the stimulated emission process.
- The master frequency needs to be close to the resonance of the slave cavity.

Advantages:
- Quasi instantaneous locking
- Exact frequency locking
- Simplicity (optical only)

Disadvantages:
- Narrow locking range
- Critical temperature control
Optical Phase Lock Loop (OPLL)

- To obtain long term tracking a phase lock loop is a better solution
- The slave laser frequency is locked by feeding back the phase error signal (after it has been suitably processed)
- Since frequency is the derivative of phase, the phase of the slave depends on the integral of the control signal

\[u(t) = K_1 \sin[m(t) - s(t)] \]
\[= K_1 [m(t) - s(t)] \]
\[= K_1 e(t) \]

\[u_2(t) = f'(t) \]
\[u_1(t) = \int f'(t) \, dt = K_3 . u_2(t) \]

OPLL Requirements

- Maximum summed linewidth of master and slave lasers is inversely proportional to the loop propagation delay
- For second-order loop with damping factor = 1/√2 and optimised loop gain, the summed linewidth should be less than 2 MHz
 - Assuming
 - 1 ns loop delay
 - 0.03 rad² phase variance

\[\text{Linewidths of master and slave lasers should both be } < 1 \text{ MHz} \]
Hybrid THz Generator System

The various elements of the THz generator are mounted on daughterboards, which are then combined on a common silicon chip, the motherboard.

- Two EAMs used as photodetectors (for detuning beat signal)
- The optical path, facet to facet, is 8.1 mm.
- The various elements of the THz generator include:
 - Laser 1 contacts
 - Laser 2 contacts
 - Slot for fibre array
 - DBR phase
 - 13 mm Matching cct

Hybrid OPLL with Active Loop Filter

- Hybrid OPLL integrated with low delay loop filter and control circuit fabricated on multi-layer board
- Total delay < 1.4 ns
- Special electronics design and fabrication by L. Pavlovic and M. Vidmar, University of Ljubljana
Demonstration of Offset Phase Locking

- Master laser is a tuneable ECL with a FWHM linewidth of 100kHz
- Slave laser (SL) operated with 150mA into each of gain and SOA sections
- Master laser set at 7dBm output power to provide ~28dBm of RF power for the loop electronics
 (Minimum power required by the loop electronics: -40dBm to -25dBm)
- Linewidth of
 Unlocked Signals: 70MHz
 Locked Signal <1kHz
 (limited by decorrelated ECL noise)

Phase Noise Measurements

- Phase noise was < -80dBc/Hz at an offset of 10kHz for a locking range of 3 – 5GHz
- With an increased SOA current of 300mA, locking was achieved over the entire locking range of 2 – 7GHz.
- Optimum performance was at an offset frequency of 4GHz due to the frequency response of the loop electronics, giving phase noise of <-90dBc/Hz
Generation of mm-Wave Signal

- Master laser is a phase modulated external cavity laser covering a frequency range of 300GHz (linewidth of each line is 100kHz)
- As only one OPLL is operational in this 1st device, THz generation is demonstrated by injection locking a DBR laser to another comb line to provide the 2nd input to the fast PD
- Spectral purity of the synthesised signal was assessed using a UTC PD (3dB b.w 110GHz; responsivity 0.5A/W), coplanar probe, external mixer and an RF spectrum analyser
- Linewidth < 1kHz (limited by decorrelated ECL noise)

Monolithic Optical Phase Lock Loop (OPLL)

Monolithic chip

Copyright © 2014 UCL
Monolithic OPLL Chip

- The optical delay is reduced to a minimum (16 ps)
- Main source of delay is loop electronics

Integrated Twin DBR Lasers- Thermal Tracking

Frequency change with temperature

Over a 5 °C temperature change
- Each laser emission frequency changes by ~ 60 GHz
- The heterodyne signal frequency changes by < 2.5GHz
Dual OPLL THz Generation

- Heterodyne linewidth less than 1kHz
- Generation of signal up to 1.6 THz with an OFCG
- Compact source using only InP based technology

Monolithic OPLL Assembly

Copyright © 2014 UCL
Monolithically Integrated OPLL Results

- The optical delay is reduced to a minimum (16 ps)
- 1st order loop (1 ns delay) in parallel with slower second order for tracking
- Locking at offsets from 3 to 5 GHz (circuit limited) with -98 dBc/Hz noise at 10 kHz offset

![RF Power and Phase Noise Graphs](image_url)
High Resolution Spectra for Single OPLL

Device C7R32, 80 kHz span, 1kHz RBW

Heterodyne OPLL with SSB Mixer

- Heterodyne OPLL:
 - Precise wavelength offset generation
 - Precise optical heterodyne RF generation
- Close integration:
 - OPLL PIC and custom InP feedback electronics
 - Very short delay → Large bandwidth

L. Johansson et al, UCSB
Heterodyne OPLL with SSB Mixer: Results

- SSB mixer capable of selectively locking to positive or negative offsets
- ~ 400 MHz loop bandwidth
- > 15 GHz hold-in range
- < -100 dBc/Hz above 5 kHz
- < 0.03 rad² phase error variance

For more information - Please see: Mingzhi Lu, et. al, – Tu2H.4, OFC2014

Optical Injection Phase Lock Loop

- For application not requiring fine tuning of the frequency an hybrid solution could be used
- Injection locking gives wideband noise suppression and tracking of slow drift is through a long delay phase lock loop
OIPLL Results

- High spectral purity
- Temperature tolerant operation

Outline

- Bandwidth Requirements
- THz Spectrum
- Predecessor Systems- Wireless Over Fibre
- Architectures
- Heterodyne Signal Generation
- Uni-Travelling Carrier Photo-Detectors as THz Sources
- Heterodyne System Demonstration
- Coherent Signal Generation- Injection Locking, Optical Phase Lock Loop, Optical Injection Phase Lock Loop
- **Coherent System Demonstrations**
- Conclusion
First WoF System Demonstration using IQ-Modulation

- Optical Carrier Generator - DOB modulation & carrier suppression
- Data Modulation - 8-QAM OFDM @ 7 GHz bandwidth
- Wireless Transmitter - using 7GHz EPHOBAC photodetector
- Wireless Receiver - RF to IF down-conversion
- OFDM with 2048 subcarriers, each carrier QAM modulated
- Bandwidth set to 7 GHz
- IF-Q mixer with IF LO of 8.5 GHz (+24 dBm)
- Optical carrier suppression: ~19 dB
- Consumed RF-bandwidth: 57.4 – 64.4 GHz
- Spectral efficiency: 3.86 bits/Hz
- 2.5 m wireless path length
- 23 dB antenna gain
- -1 dBm transmit power

Coherent System Towards >100 Gbit/s

- Phase-stabilized optical signal generator
- EOM
- UTC
- PD
- Harmonic mixer
- LO signal
- LNA
- LIA
- FEC board
- Pulse pattern generator
- Error detector

Copyright © 2014 UCL

T. Nagatsuma, Osaka Univ.
Coherent Transmitter Based on OFCG

Optical frequency comb generator

EOM

EOM (25 GHz)

Laser

Data signal

AWG filter

EOM

Optical cable

To photodiode

Phase fluctuates independently

Copyright © 2014 UCL

T. Nagatsuma, Osaka Univ.
Effect of Phase Fluctuation on Eye

Demodulated Data Signals at Receiver

Without stabilization

With stabilization

Effect of FEC w/ Stabilizer

10.3 Gbit/s
(11.1 Gbit/s w/ FEC)

w/o stabilizer → FEC was NOT possible
Conclusion

- THz wireless systems offer ultra-high bit rate transmission without the fog outages that affect free-space optical systems.

- THz wireless systems are attractive for both in-building and outdoor access applications.

- Photonic THz signal generation and detection techniques enable transfer of signals over optical fibre, enabling integration with fibre access systems.

- Advances in photonic integration techniques are key to cost effective photonically enabled THz system deployment.

Acknowledgements

Coherent THz Systems Programme Grant

IPHOBAC, IPHOS and IPHOBAC-NG Projects

UCL Photonics Group Members
- Cyril Renaud
- Martyn Fice
- Lalitha Ponnampalam
- Chris Graham
- Michele Natrella
- Katarzyna Balakier
Acknowledgements (2)

Tadao Nagatsuma- Osaka University
Andreas Stoehr- University of Duisburg-Essen
Leif Johansson- University of California, Santa Barbara
Frederic Van-Dijk, Mourad Chtioui- III-V Lab
Guillermo Carpintero- University Carlos III de Madrid
Erwin Bente- Technical University of Eindhoven
Tolga Tekin- Technical University of Berlin
Jonathan Paget- formerly Zinwave Ltd
Michael Robertson- CIP Ipswich
Matjaz Vidjmar- University of Ljubljana
Dan Kilper- University of Arizona