Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Crackless high-aspect-ratio processing of a silica glass with a temporally shaped ultrafast laser

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, we propose a crackless high-aspect-ratio processing method based on a temporally shaped ultrafast laser. The laser pulse is temporally split into two sub pulses: one with smaller energy is used to excite electrons but without ablation so that the applied pressure to the sample is weak, and the other one is used to heat the electrons and achieve material removal after it is temporally stretched by a chirped volume Bragg grating (CVBG). Compared with the conventional ultrafast laser processing, the crack generation is almost suppressed by using this proposed method. The hole depth increases more than 3.3 times, and the aspect ratio is improved at least 2.2 times. Moreover, processing dynamics and parameter dependence are further experimentally studied. It shows that the processing highly depends on the density of electrons excited by the first pulse (P1) and the energy of the second pulse (P2). This novel, to the best of our knowledge, method provides a new route for the precise processing of wide-bandgap materials.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. M. Dudley, and F. Courvoisier
Opt. Lett. 42(21) 4307-4310 (2017)

Ultrafast laser bursts welding glass and metal with solder paste to create an ultra-large molten pool

Haodong Ren, Chenyun Tian, and Hong Shen
Opt. Lett. 49(7) 1717-1720 (2024)

High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching

Zhi Wang, Lan Jiang, Xiaowei Li, Andong Wang, Zhulin Yao, Kaihu Zhang, and Yongfeng Lu
Opt. Lett. 43(1) 98-101 (2018)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.