Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Decoding of compressive data pages for optical data storage utilizing FFDNet

Not Accessible

Your library or personal account may give you access

Abstract

Coded aperture-based compression has proven to be an effective approach for high-density cold data storage. Nevertheless, its limited decoding speed represents a significant challenge for its broader application. We introduce a novel, to the best of our knowledge, decoding method leveraging the fast and flexible denoising network (FFDNet), capable of decoding a coded aperture-based compressive data page within 30.64 s. The practicality of the method has been confirmed in the decoding of monochromatic photo arrays, full-color photos, and dynamic videos. In experimental trials, the variance between decoded results obtained via the FFDNet-based method and the FFDNet-absent method in terms of average PSNR is less than 1 dB, while realizing a decoding speed enhancement of over 100-fold when employing the FFDNet-based method.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Coded aperture-based compressive data page for optical data storage

Zehao He, Kexuan Liu, Mao Fan, and Liangcai Cao
Opt. Lett. 48(16) 4304-4307 (2023)

Multifocal multiview imaging and data compression based on angular–focal–spatial representation

Kejun Wu, Qiong Liu, Kim-Hui Yap, and You Yang
Opt. Lett. 49(3) 562-565 (2024)

Snapshot compressive structured illumination microscopy

Runqiu Luo, Miao Cao, Xing Liu, and Xin Yuan
Opt. Lett. 49(2) 186-189 (2024)

Supplementary Material (1)

NameDescription
Supplement 1       Supplement 1

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.