Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-field sequential color liquid crystal displays with deep learning-enabled real-time driving

Not Accessible

Your library or personal account may give you access

Abstract

Two-field driving is the ultimate goal of field sequential color liquid crystal displays (FSC-LCDs) because it requires the lowest refresh rate and transmission bandwidth in addition to the intrinsic advantages of FSC-LCDs, e.g., tripled light efficiency and spatial resolution. However, fewer fields create a more significant challenge in controlling color breakup and distortion, as well as higher computational complexity in calculating LC signals. Regarding the difficulties, we propose a two-field FSC driving method that synchronously generates backlight and LC signals through two lightweight neural networks. The runtimes of the two networks are as fast as 1.23 and 1.79 ms per frame on a GeForce RTX 3090Ti graphic card, fully supporting real-time driving. Next, an over-partitioning approach is proposed to overcome the cross talk between backlight segments while processing high-resolution images. Besides the real-time feature, a reduction of 14.88% in color breakup concerning current methods and low distortion are verified. We also provide our open-source code.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Deep learning-based real-time driving for 3-field sequential color displays with low color breakup and high fidelity

Zeyu Wang, Guowei Zou, Yan Shen, Bo-Ru Yang, and Zong Qin
Opt. Express 31(11) 17999-18016 (2023)

Deep learning-enabled image content-adaptive field sequential color LCDs with mini-LED backlight

Guowei Zou, Zeyu Wang, Yutong Liu, Juanli Li, Xingyun Liu, Jiahui Liu, Bo-Ru Yang, and Zong Qin
Opt. Express 30(12) 21044-21064 (2022)

Color breakup suppression based on global dimming for field sequential color displays using edge information in images

Fang-Cheng Lin, Zong Qin, Kai-Tung Teng, and Yi-Pai Huang
Opt. Express 27(3) 2335-2343 (2019)

Supplementary Material (1)

NameDescription
Supplement 1       Detailed explanation of the network structure and algorithm outputs with more pictures

Data availability

The code in this paper is available in Ref. [23].

23. Z. Wang, “Python code for 2-field-driving-method,” GitHub (2023), https://github.com/Wangzy221/2-field-driving-method.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.