Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effective suppression of residual coherent phase error in a dual-polarization fiber optic gyroscope

Not Accessible

Your library or personal account may give you access

Abstract

The impact of residual coherent phase error in a dual-polarization interferometric fiber optic gyroscope (IFOG) is investigated. Although it has been intuitively assumed that the coherence of a light source can be eliminated by a sufficient long fiber delay, the experiment and theory indicate that it still contributes a remarkable portion to long-term instability. After the residual coherent phase error is well handled, we demonstrate a dual-polarization IFOG with bias instability of 3.56×104°/h. Comparisons show that such performance is even better than the conventional “minimal scheme” that operates on one polarization.

© 2018 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.