Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Feasible measurement-based entanglement purification in linear optics

Open Access Open Access

Abstract

Entanglement purification is used to distill high quality entangled states from several noisy low quality entangled states, and it plays a key role in quantum repeater. The measurement-based entanglement purification protocol (MB-EPP) does not require local two-qubit gates or single-particle measurements on the noisy pairs and may offer significant advantages compared with the gate-based EPPs. We present an alternative MB-EPP in linear optics. Subsequently, we provide a detailed analysis on the realization of this MB-EPP using spontaneous parametric down conversion (SPDC) sources. By delicately designing the optical circuits, the double-pair emission noise caused by SPDC sources can be eliminated automatically. Combined with suitable quantum memory and entanglement swapping, this MB-EPP may have application potential in the implementation of a practical measurement-based quantum repeater.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The development of quantum communication [17] and quantum network [8,9] have attracted much attention from industries and researchers. Many important quantum secure communication protocols such as quantum key distribution (QKD) [1], quantum secret sharing (QSS) [2], quantum secure direct communication (QSDC) [35] and some quantum computation protocols [1015] all employ quantum entanglement. Among these protocols, the communication parties should first distribute and share nonlocal high quality entanglement. However, photon loss during entanglement distribution scales exponentially with the length of quantum channel and limits the total distance and secrecy of quantum communication [16].

Quantum repeater (QR) is a promising method to realize long-distance quantum communication which was first proposed in 1998 [16] and has been widely developed during the last 20 years [1732]. In general, the total distance is divided into several short-distance segments. Entanglement is distributed in each short-distance segments. During entanglement distribution, if the high quality entanglement is degraded because of environment noise, entanglement purification is exploited to distill high quality entangled states from low quality entangled states. Subsequently, the entanglement swapping is employed between two adjacent segments and finally the high quality entanglement is stored using quantum memory [16]. Much attention has been devoted not only in quantum repeater, but also in its building blocks such as entanglement distribution [33,34], entanglement purification [3563], entanglement swapping [64] and quantum memory [6568]. Although great efforts have been made and quantum repeaters were designed and optimized for three generations [27], practical quantum repeater is still a big challenge with current experimental technology, for all building blocks require sufficiently high accuracy, i.e., with errors of a few percent [69]. In recent years, Zwerger et al. introduced a new kind of quantum repeater, i.e., measurement-based quantum repeater (MBQR) [69,70]. Different from the conventional quantum repeaters, MBQR avoids performing accurate coherent quantum gates. Only resource states prepared off-line in a probabilistic way are coupled with incoming photons by simple Bell-state measurement (BSM) [71,72].

Entanglement purification is a key part of QR. Entanglement purification protocol (EPP) was first proposed to counteract the inherent noise aided with controlled-not (CNOT) gates in 1996 [35]. Since then, many recurrence EPPs [3741,4446,4853,5659] which require two noisy copies to yield one high-quality entanglement have been studied. However, this kind of EPPs often have low yield. Additionally, the deterministic EPPs [42,43] and robust EPPs using hashing protocol [36,47] were exploited. For example, Sheng et al. presented a deterministic EPP to obatin a maximally entangled state just with one step, which significantly reduces the consumption of resource states [43]. In EPPs using hashing protocol [36,47], arbitrary $n$ copies are selected from the total $N$ pairs and the bilateral local CNOT operations are performed on each of the $n$ pairs. After measuring the selected pairs, the information of the remaining state is revealed thereby the parties can purify the polluted states. In 2021, the authors in Refs. [6063] only employed one noisy pair to distill a high-fidelity entanglement using hyperentanglement, which can efficiently improve the efficiency of existing EPPs. Moreover, the measurement-based entanglement purification protocols (MB-EPPs) [69,70] were introduced which are different from EPPs based on coherent gates [35,37]. Furthermore, the results indicated that the MB-EPPs can tolerate more noise than conventional EPPs [70,73,74]. The original MB-EPP proposed by Zwerger et al. [70,73] provided us a universal model for general mixed entangled states. However, the original MB-EPP not only requires the ideal entanglement source but also the ideal resource state, i.e., the clean multi-partite entangled state. Unfortunately, in optical system, the ideal entanglement source is unavailable. Current available entanglement source is the spontaneous parametric down conversion (SPDC) source. Due to the probabilistic nature of the SPDC source [51], the double-pair noise components, which make spurious contributions to the resultant entangled state in both entanglement purification and resource state preparation remain big challenges in the MB-EPP.

In this paper, we will propose a feasible MB-EPP in linear optical system, based on the original work in Ref. [73]. We first describe a simple example of the MB-EPP with two-copy of mixed states. Then, we extend it to the multi-copy case. Finally, we design a possible experimental realization and provide a detailed analysis of the MB-EPP with SPDC sources. We use SPDC sources to generate both the resource states and the incoming mixed states. Interestingly, in our MB-EPP, the double-pair emission noise caused by SPDC sources can be eliminated automatically. Our results show that it is possible to realize the MB-EPP in current experiment technology. Therefore, this work may become one of the key steps for MB-EPP from the original theoretical protocol to practical experiment implementation. Moreover, combined with suitable quantum memory and entanglement swapping, our MB-EPP may have application potential in the implementation of a practical MBQR.

The paper is organized as follows. In Sec. 2, we first present a simple two-copy example of MB-EPP in the ideal optical system. In Sec. 3, we extend the MB-EPP to three-copy case and arbitrary $N$-copy case. In Sec. 4, we provide a detailed analysis of such MB-EPP in current experiment condition. We show that although the ideal entanglement source is unavailable, the current SPDC sources can also be employed to perform this MB-EPP and the double-pair emission noise caused by SPDC sources can be removed automatically during the BSMs. Finally, in Sec. 5, we present a discussion and make a conclusion.

2. MB-EPP with two noisy copies

In this section, we first consider the MB-EPP with two-copy mixed states as shown in Fig. 1. We let $|\phi ^{\pm }\rangle _{ab}$ and $|\psi ^{\pm }\rangle _{ab}$ are four Bell states of the form

$$\begin{aligned} |\phi^{{\pm}}\rangle_{ab}&= \frac{1}{{\sqrt 2 }}{(|{HH}\rangle _{ab}} \pm|{VV}\rangle _{ab}),\\ |\psi^{{\pm}}\rangle _{ab} &= \frac{1}{{\sqrt 2 }}{(| {HV}\rangle _{ab}} \pm| {VH}{\rangle _{ab}}). \end{aligned}$$

Here $|H\rangle$ and $|V\rangle$ respectively denote horizontal polarization and vertical polarization of photon. The subscripts $a$ and $b$ represent the spatial modes. As shown in Fig. 1, suppose Alice and Bob want to share the maximally entangled state $|\phi ^{+}\rangle _{ab}$. However, a bit-flip error occurs with the probability of $1-F$ and $|\phi ^{+}\rangle _{ab}$ becomes $|\psi ^{+}\rangle _{ab}$. In this way, the whole state becomes

$${\rho _{ab}}\textrm{ = }F|\phi^+\rangle _{ab}\langle\phi^+| + (1 - F)|\psi ^+ \rangle _{ab}\langle\psi^+|.$$

Hence, the whole system ${\rho _{{a_1}{b_1}}} \otimes {\rho _{{a_2}{b_2}}}$ can be described as follows. The system is in $|\phi ^+\rangle _{{a_1}{b_1}}|\phi ^+\rangle _{{a_2}{b_2}}$ with the probability of ${F^2}$. It is in the state $|\phi ^+\rangle _{{a_1}{b_1}}|\psi ^+\rangle _{{a_2}{b_2}}$ and $|\psi ^+\rangle _{{a_1}{b_1}}|\phi ^+\rangle _{{a_2}{b_2}}$ with an equal probability of $F(1 - F)$. With the probability of $(1 - F)^2$, it is in the state $|\psi ^+\rangle _{{a_1}{b_1}}|\psi ^+\rangle _{{a_2}{b_2}}$.

 figure: Fig. 1.

Fig. 1. The schematic diagram of MB-EPP in linear optics for two noisy copies. It needs two resource states R$_1$ and R$_2$. The photons in modes $a_1$ and $g_1$, $a_2$ and $g_2$, $b_1$ and $h_1$, $b_2$ and $h_2$ are directed to four 50:50 beam-splitters (BSs) to couple with resource states via BSMs, respectively. The polarizing beam-splitters (PBSs) totally transmit the photon in $|H\rangle$ and reflect the photon in $|V\rangle$. A successful BSM corresponds to a projection onto $|\psi ^\textrm{+}\rangle$ or $|\psi ^\textrm{-}\rangle$ [71,72]. We take the BSM1 for an example. If the detectors ${D_1}{D_{{1^\prime }}}$ or ${D_2}{D_{{2^\prime }}}$ each register one photon, it indicates a projection onto $|\psi ^+\rangle$. If the detectors ${D_1}{D_{{2^\prime }}}$ or ${D_2}{D_{{1^\prime }}}$ each register one photon, it corresponds to a projection onto $|\psi ^-\rangle$.

Download Full Size | PDF

In the MB-EPP, two pairs of resource states $R_{1}$ and $R_{2}$ are required in Alice’s and Bob’s locations, respectively. In this two-copy case, the resource state is a three-photon Greenberg-Horne-Zeilinger (GHZ) state of the form

$$|\textrm{GHZ}\rangle = \frac{1}{{\sqrt 2 }}(|{HHH}\rangle +|{VVV}\rangle ).$$

The three-photon GHZ states $R_{1}$ and $R_{2}$ are in the spatial modes $g_{1}g_{2}g_{3}$ and $h_{1}h_{2}h_{3}$, respectively. Therefore, the two mixed states combined with two resource states can be described as ${\rho _{{a_1}{b_1}}} \otimes {\rho _{{a_2}{b_2}}}\otimes |\textrm{GHZ}\rangle _{g_{1}g_{2}g_{3}}\otimes |\textrm{GHZ}\rangle _{h_{1}h_{2}h_{3}}$. Alice (Bob) performs BSMs on ${a_i}$ (${b_i}$) and ${g_i}$ (${h_i}$) ($i = 1,2$). The success purification is that Alice and Bob pick up the same outcome of measurement [69,70,73]. Here, due to the fact that the standard BSM [71,72] can only distinguish two of the four Bell states $|\psi ^{\pm }\rangle$, we merely consider the case that all the measurement outcomes are $|\psi ^{+}\rangle$ or $|\psi ^{-}\rangle$. For example, with the probability ${F^2}$, state ${\rho _{{a_1}{b_1}}} \otimes {\rho _{{a_2}{b_2}}}\otimes |\textrm{GHZ}\rangle _{g_{1}g_{2}g_{3}}\otimes |\textrm{GHZ}\rangle _{h_{1}h_{2}h_{3}}$ can be described as

$$\begin{aligned} &|\phi^{+}\rangle_{{a_1}{b_1}}|\phi^{+}\rangle_{{a_2}{b_2}}|\textrm{GHZ}\rangle_{{g_1}{g_2}{g_3}}|\textrm{GHZ}\rangle_{{h_1}{h_2}{h_3}}\\ &=\frac{1}{{4}}|HH\rangle_{{g_3}{h_3}}(|HH\rangle_{{g_1}{a_1}}|HH\rangle_{{g_2}{a_2}}|HH\rangle_{{h_1}{b_1}}|HH\rangle_{{h_2}{b_2}}\\ &+|HH\rangle_{{g_1}{a_1}}|HV\rangle_{{g_2}{a_2}}|HH\rangle_{{h_1}{b_1}}|HV\rangle_{{h_2}{b_2}}\\ &+|HV\rangle_{{g_1}{a_1}}|HH\rangle_{{g_2}{a_2}}|HV\rangle_{{h_1}{b_1}}|HH\rangle_{{h_2}{b_2}}\\ &+|HV\rangle_{{g_1}{a_1}}|HV\rangle_{{g_2}{a_2}}|HV\rangle_{{h_1}{b_1}}|HV\rangle_{{h_2}{b_2}})\\ &+\frac{1}{{4}}|HV\rangle_{{g_3}{h_3}}(|HH\rangle_{{g_1}{a_1}}|HH\rangle_{{g_2}{a_2}}|VH\rangle_{{h_1}{b_1}}|VH\rangle_{{h_2}{b_2}}\\ &+|HH\rangle_{{g_1}{a_1}}|HV\rangle_{{g_2}{a_2}}|VH\rangle_{{h_1}{b_1}}|VV\rangle_{{h_2}{b_2}}\\ &+|HV\rangle_{{g_1}{a_1}}|HH\rangle_{{g_2}{a_2}}|VV\rangle_{{h_1}{b_1}}|VH\rangle_{{h_2}{b_2}}\\ &+|HV\rangle_{{g_1}{a_1}}|HV\rangle_{{g_2}{a_2}}|VV\rangle_{{h_1}{b_1}}|VV\rangle_{{h_2}{b_2}})\\ &+\frac{1}{{4}}|VH\rangle_{{g_3}{h_3}}(|VH\rangle_{{g_1}{a_1}}|VH\rangle_{{g_2}{a_2}}|HH\rangle_{{h_1}{b_1}}|HH\rangle_{{h_2}{b_2}}\\ &+|VH\rangle_{{g_1}{a_1}}|VV\rangle_{{g_2}{a_2}}|HH\rangle_{{h_1}{b_1}}|HV\rangle_{{h_2}{b_2}}\\ &+|VV\rangle_{{g_1}{a_1}}|VH\rangle_{{g_2}{a_2}}|HV\rangle_{{h_1}{b_1}}|HH\rangle_{{h_2}{b_2}}\\ &+|VV\rangle_{{g_1}{a_1}}|VV\rangle_{{g_2}{a_2}}|HV\rangle_{{h_1}{b_1}}|HV\rangle_{{h_2}{b_2}})\\ &+\frac{1}{{4}}|VV\rangle_{{g_3}{h_3}}(|VH\rangle_{{g_1}{a_1}}|VH\rangle_{{g_2}{a_2}}|VH\rangle_{{h_1}{b_1}}|VH\rangle_{{h_2}{b_2}}\\ &+|VH\rangle_{{g_1}{a_1}}|VV\rangle_{{g_2}{a_2}}|VH\rangle_{{h_1}{b_1}}|VV\rangle_{{h_2}{b_2}}\\ &+|VV\rangle_{{g_1}{a_1}}|VH\rangle_{{g_2}{a_2}}|VV\rangle_{{h_1}{b_1}}|VH\rangle_{{h_2}{b_2}}\\ &+|VV\rangle_{{g_1}{a_1}}|VV\rangle_{{g_2}{a_2}}|VV\rangle_{{h_1}{b_1}}|VV\rangle_{{h_2}{b_2}}). \end{aligned}$$

Therefore, by selecting the case that all BSM results are $|\psi ^{+}\rangle$ or $|\psi ^{-}\rangle$ (Appendix A), the photons in ${g_3}{h_3}$ will become

$$|\phi^+\rangle_{{g_3}{h_3}}=\frac{1}{{\sqrt 2 }}(|{HH}\rangle_{{g_3}{h_3}}+|{VV}\rangle_{{g_3}{h_3}}).$$

Similarly, after the parties performing the BSMs and picking up $|\psi ^+\rangle$ or $|\psi ^-\rangle$, the state $|\psi ^+\rangle _{{a_1}{b_1}}|\psi ^+\rangle _{{a_2}{b_2}}|\textrm{GHZ}\rangle _{{g_1}{g_2}{g_3}}|\textrm{GHZ}\rangle _{{h_1}{h_2}{h_3}}$ will evolve to Eq. (6) with the form of

$$|\psi^+\rangle_{{g_3}{h_3}} = \frac{1}{{\sqrt 2 }}(|{HV}\rangle _{{g_3}{h_3}}+|{VH}\rangle_{{g_3}{h_3}}).$$

The remaining items $|\psi ^+\rangle _{{a_1}{b_1}}|\phi ^+\rangle _{{a_2}{b_2}}$ and $|\phi ^+\rangle _{{a_1}{b_1}}|\psi ^+\rangle _{{a_2}{b_2}}$ of $\rho _{a_1b_1}\otimes \rho _{a_2b_2}$ combined with $|\textrm{GHZ}\rangle _{{g_1}{g_2}{g_3}}|\textrm{GHZ}\rangle _{{h_1}{h_2}{h_3}}$ fail to make all the BSM results be $|\psi ^+\rangle$ or $|\psi ^-\rangle$. This corresponds to a failure for MB-EPP. Therefore, by selecting the cases that all the BSM results are $|\psi ^+\rangle$ or $|\psi ^-\rangle$, state in ${g_3}{h_3}$ will become a new mixed state

$$\rho_{{g_3}{h_3}} \!=\! {F_{2}}| \phi^+\rangle_{{g_3}{h_3}}\langle\phi^+| \!+ \!(1 - {F_{2}})|\psi^+\rangle_{{g_3}{h_3}}\langle \psi^+|,$$
where ${F_{2}}$ can be given by
$${F_{2}} = \frac{{{F^2}}}{{{F^2} + {{(1 - F)}^2}}}.$$

As discussed in Ref. [35], if $F > 0.5$, the fidelity of resultant state is higher than that of initial one.

3. MB-EPP with multiple noisy copies

In this section, we will present the analysis of MB-EPP with multiple noisy copies. As shown in Fig. 2 ($N=3$), we need three copies of the mixed states ${\rho _{{a_1}{b_1}}}$, ${\rho _{{a_2}{b_2}}}$ and ${\rho _{{a_3}{b_3}}}$. The resource state is a four-photon GHZ state which can be given by

$$|\textrm{GHZ}\rangle = \frac{1}{{\sqrt 2 }}(|HHHH\rangle + |VVVV\rangle ).$$

If a bit-flip error occurs, states in modes ${a_1}{b_1}$, ${a_2}{b_2}$ and ${a_3}{b_3}$ will become the mixed states shown in Eq. (2). The whole mixed system ${\rho _{{a_1}{b_1}}}\otimes {\rho _{{a_2}{b_2}}}\otimes {\rho _{{a_3}{b_3}}}$ can be described as follows. It is in the state $|\phi ^+\rangle _{{a_1}{b_1}}|\phi ^+\rangle _{{a_2}{b_2}}|\phi ^ +\rangle _{{a_3}{b_3}}$ with the probability of $F^3$. It is in the state $|\psi ^+\rangle _{{a_1}{b_1}}|\psi ^+\rangle _{{a_2}{b_2}}|\psi ^+\rangle _{{a_3}{b_3}}$ with the probability of $(1\!-\!F)^3$. With an equal probability of ${F^2}(1 \!-\! F)$, it is in the state $|\phi ^+\rangle _{{a_1}{b_1}}|\phi ^+\rangle _{{a_2}{b_2}}|\psi ^+\rangle _{{a_3}{b_3}}$, $|\phi ^+\rangle _{{a_1}{b_1}}|\psi ^+\rangle _{{a_2}{b_2}}|\phi ^+\rangle _{{a_3}{b_3}}$ and $|\psi ^+\rangle _{{a_1}{b_1}}|\phi ^ +\rangle _{{a_2}{b_2}}|\phi ^+\rangle _{{a_3}{b_3}}$. The whole mixed state is in $|\phi ^ +\rangle _{{a_1}{b_1}}|\psi ^+\rangle _{{a_2}{b_2}}|\psi ^ +\rangle _{{a_3}{b_3}}$, $|\psi ^ +\rangle _{{a_1}{b_1}}|\psi ^ +\rangle _{{a_2}{b_2}}|\phi ^ +\rangle _{{a_3}{b_3}}$ and $|\psi ^ +\rangle _{{a_1}{b_1}}|\phi ^ +\rangle _{{a_2}{b_2}}|\psi ^ +\rangle \!_{{a_3}{b_3}}$ with an equal probability of $F{(1 \!-\! F)^2}$.

 figure: Fig. 2.

Fig. 2. The schematic diagram of MB-EPP protocol for multiple noisy copies [73]. Two pairs of $N+1$-photon resource states are required. The boxes represent the standard BSMs [71,72] depicted as Fig. 1.

Download Full Size | PDF

The purification principle is similar to the two-copy case (Appendix B). After performing the BSMs, they pick up the case that all the BSM results are $|\psi ^{+}\rangle$ or $|\psi ^{-}\rangle$. In this way, the state $|\phi ^ +\rangle _{{a_1}{b_1}}|\phi ^ +\rangle _{{a_2}{b_2}}|\phi ^ +\rangle _{{a_3}{b_3}}$ combined with two resource states $|\textrm{GHZ}\rangle _{{g_1}{g_2}{g_3}{g_4}}$ and $| \textrm{GHZ}\rangle _{{h_1}{h_2}{h_3}{h_4}}$ will evolve to

$$|\phi^+\rangle_{{g_4}{h_4}} = \frac{1}{{\sqrt 2 }}(|HH\rangle_{{g_4}{h_4}}+|VV\rangle_{{g_4}{h_4}}).$$

On the other hand, with the same selection principle, the state $|\psi ^ +\rangle _{{a_1}{b_1}}|\psi ^ +\rangle _{{a_2}{b_2}}|\psi ^ +\rangle _{{a_3}{b_3}}$ combined with two resource states $|\textrm{GHZ}\rangle _{{g_1}{g_2}{g_3}{g_4}}$ and $|\textrm{GHZ}\rangle \!_{{h_1}{h_2}{h_3}{h_4}}$ will collapse to

$$|\psi ^ + \rangle _{{g_4}{h_4}}= \frac{1}{{\sqrt 2 }}(|HV\rangle_{{g_4}{h_4}} + |VH\rangle_{{g_4}{h_4}}).$$

Additionally, the other items of $\rho _{a_1b_1}\otimes \rho _{a_2b_2}\otimes \rho _{a_3b_3}$ such as $P\left [ {|{\psi ^ + }{\rangle ^{ \otimes 2}}|{\phi ^ + }\rangle } \right ]$ and $P\left [ {|{\phi ^ + }{\rangle ^{ \otimes 2}}|{\psi ^ + }\rangle } \right ]$ where $P\left [ \cdot \right ]$ denotes the permutation of three pairs of Bell states can be eliminated automatically according to the outcomes of BSMs. Finally, we can obtain a new mixed state

$${\rho_{{g_4}{h_4}}}={F_3}|\phi^+\rangle_{{g_4}{h_4}}\langle\phi^+|+(1 - {F_3})|\psi^+\rangle_{{g_4}{h_4}}\langle\psi^+|,$$
where ${F_3}$ can be calculated as
$${F_3} = \frac{{{F^3}}}{{{F^3} + {{(1 - F)}^3}}}.$$

It is straightforward to extend this protocol to the MB-EPP with $N$ ($N>2$) noisy copies, as shown in Fig. 2 (Appendix C). After performing the MB-EPP, the new mixed state with $N$ noisy copies can be given by

$${\rho \!_{{g_{N+1}}{h_{N+1}}}}\!\!=\!\! {F\!_N}|\phi^+\rangle\!_{{g_{N+1}}{h_{N+1}}}\langle\phi^+|+(1 \!\!-\!\! {F\!_N})|\psi^+\rangle \!_{{g_{N+1}}{h_{N+1}}}\langle\psi ^ +|,$$
where $F_N$ can be written as
$${F_N} = \frac{{{F^N}}}{{{F^N} + {{(1 - F)}^N}}}.$$

In this way, we have completely explained the MB-EPP in ideal linear optics.

Fig. 3 plots the final fidelity $(F_{N})$ of the distilled new mixed state as a function of the initial fidelity of the input mixed states with $N=2, 3, 4, 5$. In addition, the research shows that the more noisy copies being purified, the higher fidelity of MB-EPP will be obtained. To be specific, if the initial fidelity is 0.65, the new fidelity is 0.775 for $N=2$, 0.865 for $N=3$, and 0.923 for $N=4$, as well as 0.956 for $N=5$. Refs. [48,57] also investigated the multi-copy EPP in linear optics. Our multi-copy MB-EPP has the same purified fidelity with Ref. [57]. Moreover, the previous multi-copy EPPs are based on the postselection, all purified entangled photons would be destroyed, similar to the two-copy case [38]. In our MB-EPP, the purified entangled photon pair in $g_{N+1}h_{N+1}$ can be remained for further application, which is an another advantage of our MB-EPP. In a practical experiment, the initial fidelity $F$ can be easily controlled like Refs. [40,51]. For example, if two parties want to prepare the mixed state as Eq. (2) with the fidelity of $F=0.75$, only one party should set a half-wave plate with the axis orienting at $\pm 14^{\circ }$. This will cause that the two-photon system is in the state $|\phi ^+\rangle$ with the probability $75{\%}$ and $|\psi ^+\rangle$ with the probability $25{\%}$.

 figure: Fig. 3.

Fig. 3. The fidelity $F_{N}$ altered with the initial fidelity $F$, where we control $N=2, 3, 4, 5$.

Download Full Size | PDF

4. MB-EPP in practical linear optics

In the previous section, we have completed the analysis for this MB-EPP with ideal linear optical elements, especially the ideal entanglement sources. Meanwhile, this MB-EPP also requires Alice and Bob to generate the ideal GHZ states. Unfortunately, the ideal entanglement source which can exactly generate the entangled photon pair is unavailable. The practical entanglement source is SPDC source, which generates entangled state in a probabilistic way. Moreover, the ideal GHZ state is also unavailable and the common method to generate GHZ state is still to exploit the SPDC sources. It seems that the inherent probability nature of SPDC sources may become an obstacle to realize the MB-EPP. Interestingly, we will show that the MB-EPP can also work with SPDC sources. Especially, the double-pair emission noise caused by the SPDC sources can be removed automatically by the BSMs [71,72]. In Fig. 4, we design an alternative approach to realize the MB-EPP in the two-copy case. The approach is composed of three parts. The first part is the entanglement generation. The second is the preparation of two resource states using the approach in Ref. [75]. The third is the BSM to perform the purification.

 figure: Fig. 4.

Fig. 4. The schematic diagram of MB-EPP in linear optics. It has three parts which are entanglement generation, preparation of resource states and BSM. The UV laser passes through two BBO crystals to generate two entangled states $|\Phi ^+\rangle _{a_{1}b_{1}}$ and $|\Phi ^+\rangle _{a_{2}b_{2}}$. The photons in modes $a_1$, $b_1$, $a_2$ and $b_2$ are directed to four 50:50 beam splitters (BSs) to couple with resource states via BSMs, respectively. The polarizing beam splitters (PBSs) totally transmit the photon in $|H\rangle$ and reflect the photon in $|V\rangle$. A successful BSM corresponds to a projection into $|\psi ^\textrm{+}\rangle$ ($|\psi ^\textrm{-}\rangle$), providing a click on ${D_{H3}}{D_{V3}}$ (${D_{H3}}{D_{V4}}$) or ${D_{H4}}{D_{V4}}$ (${D_{H4}}{D_{V3}}$). The preparation of resource states can be described as follows. The UV laser passes through BBO$_{3}$, BBO$_{4}$, BBO$_{5}$, and BBO$_{6}$ to generate four entangled states $|\Phi ^+\rangle _{g_{1}g_{2}}$, $|\Phi ^+\rangle _{g_{3}g_{4}}$, $|\Phi ^+\rangle _{h_{1}h_{2}}$, and $|\Phi ^+\rangle _{h_{3}h_{4}}$. The photons in modes $g_{2}g_{3}$ and $h_{2}h_{3}$ are directed to two BSs, respectively. When a click on $D_3$ and $D_1$, the remaining particles can be utilized to help us to operate MB-EPP.

Download Full Size | PDF

In Fig. 4, the pump passes through a beta barium borate (BBO) crystal to probabilistically generate one entangled pair in modes $a_1$ and $b_1$ as [51]

$$|\Phi^+\rangle _{a_{1}b_{1}} = |vac\rangle + \sqrt p |\phi^+\rangle_{a_{1}b_{1}} + \frac{p}{2}( |\phi^+\rangle_{a_{1}b_{1}})^{ {\otimes} 2}.$$

Here, $|vac\rangle$ is the vacuum state and we omit the higher-order state for simplicity. Eq. (16) means that Alice and Bob share one pair of maximally entangled state $|\phi ^+\rangle _{a_{1}b_{1}}$ with the probability of $p$. However, a bit-flip error may occur during the photon transmission in the inherent noisy channels, which makes Eq. (16) become

$$|\Psi^+\rangle _{a_{1}b_{1}} = |vac\rangle + \sqrt p |\psi^+\rangle_{a_{1}b_{1}} + \frac{p}{2}( |\psi^+\rangle_{a_{1}b_{1}})^{ {\otimes} 2}.$$

Consequently, Alice and Bob share the mixed states with the form of

$$\rho_{1}=F|{\Phi ^ + }{\rangle _{a_{1}b_{1}}}{\langle {\Phi ^ + }| + (1 - F)|{\Psi ^ + }\rangle _{a_{1}b_{1}}}\langle {\Psi ^ + }|.$$

4.1 Preparation for resource states

In this subsection, we consider the preparation of resource states based on Ref. [75]. In this MB-EPP, we require two pairs of three-photon GHZ states. As shown in Fig. 4, the generation of three-photon GHZ state requires two pairs of two-photon Bell states. For the generation of the first GHZ state, we use BBO$_3$ and BBO$_4$ to generate two pairs of Bell states. BBO$_5$ and BBO$_6$ are employed to construct the second three-photon GHZ state. Here, we take the generation of the first GHZ state for example and the same principle can be carried out for the second resource state. We use a click in the detector $D_1$ of Fig. 4 to herald a success generation of the first resource state. In detail, the two entangled states generated by SPDC sources (BBO$_3$ and BBO$_4$) are $|\Phi ^+\rangle _{{h_1}{h_2}}$ and $|\Phi ^+\rangle _{{h_3}{h_4}}$. According to Eq. (16), the system $|\Phi ^+\rangle _{{h_1}{h_2}} \otimes |\Phi ^+\rangle _{{h_3}{h_4}}$ is in the state $\frac {1}{2}(|{HH}\rangle +|{VV}\rangle )\otimes (|{{h_1}{h_2}}\rangle +|{{h_3}{h_4}}\rangle )$ with the probability of $p$, which is essentially the hyperentanglement in polarization and spatial modes. With an equal probability of $\frac {{{p^2}}}{4}$, it is in the state $|{\phi ^ + }\rangle _{{h_1}{h_2}}^{ \otimes 2}$ and $|{\phi ^ + }\rangle _{{h_3}{h_4}}^{ \otimes 2}$. It is in the state $|\phi ^+\rangle _{{h_1}{h_2}}|\phi ^+\rangle _{{h_3}{h_4}}$ with the probability of ${{p^2}}$.

First, with the probability of $p$, the system is a hyperentanglement in polarization and spatial modes, which can be written as

$$\begin{aligned} \frac{1}{2}(|HH\rangle + |VV\rangle ) \otimes (|{h_1}{h_2}\rangle + |{h_3}{h_4}\rangle )\!&=\!\frac{1}{2}{(|H\rangle _{{h_1}}}|H{\rangle _{{h_2}}} + |H{\rangle _{{h_3}}}|H{\rangle _{{h_4}}}\\ &+|V{\rangle _{{h_1}}}|V{\rangle _{{h_2}}} + |V{\rangle _{{h_3}}}|V{\rangle _{{h_4}}}). \end{aligned}$$

Let the photons in spatial modes $h_2$ and $h_3$ pass through the PBSs which totally transmit the photons in $|H\rangle$ and reflect the photons in $|V\rangle$. Hence, the items ${|H\rangle _{{h_1}}}|H{\rangle _{{h_2}}}$ and ${|H\rangle _{{h_3}}}|H{\rangle _{{h_4}}}$ fail to make $D_1$ click, thereby can be eliminated. For the other two items ${|V\rangle _{{h_1}}}|V{\rangle _{{h_2}}}$ and ${|V\rangle _{{h_3}}}|V{\rangle _{{h_4}}}$, the photon in $|V\rangle$ in the spatial modes $h_2$ and $h_3$ separately result in a click in $D_1$. Thus, the system described as Eq. (19) becomes

$$\frac{1}{2}(|{HH}\rangle+|{VV}\rangle)\otimes(|{{h_1}{h_2}}\rangle+|{{h_3}{h_4}}\rangle )\to \frac{1}{{2\sqrt 2 }}({|V\rangle_{h_1}} + {|V\rangle_{h_4}}).$$

The state $|{\phi ^ + }{\rangle _{{h_1}{h_2}}}|{\phi ^ + }{\rangle _{{h_3}{h_4}}}$ can be written as

$$\begin{aligned} |{\phi ^ + }{\rangle _{{h_1}{h_2}}}|{\phi ^ + }{\rangle _{{h_3}{h_4}}}&=\frac{1}{2}{(|H\rangle _{{h_1}}}|H{\rangle _{{h_2}}}|H{\rangle _{{h_3}}}|H{\rangle _{{h_4}}} + |H{\rangle _{{h_1}}}|H{\rangle _{{h_2}}}|V{\rangle _{{h_3}}}|V{\rangle _{{h_4}}}\\ &+|V{\rangle _{{h_1}}}|V{\rangle _{{h_2}}}|H{\rangle _{{h_3}}}|H{\rangle _{{h_4}}} + |V{\rangle _{{h_1}}}|V{\rangle _{{h_2}}}|V{\rangle _{{h_3}}}|V{\rangle _{{h_4}}}). \end{aligned}$$

Obviously, the item ${|H\rangle _{{h_1}}}|H{\rangle _{{h_2}}}|H{\rangle _{{h_3}}}|H{\rangle _{{h_4}}}$ can be eliminated because it makes no click in $D_1$. Additionally, the item $|H{\rangle _{{h_1}}}|H{\rangle _{{h_2}}}|V{\rangle _{{h_3}}}|V{\rangle _{{h_4}}}$ makes $D_1$ register one photon and will evolve to $|H{\rangle _{{h_1}}}|V{\rangle _{{h_4}}}|H{\rangle _{{h_5}}}$. With the same principle, $|V{\rangle _{{h_1}}}|V{\rangle _{{h_2}}}|H{\rangle _{{h_3}}}|H{\rangle _{{h_4}}}$ will collapse to $|V{\rangle _{{h_1}}}|H{\rangle _{{h_4}}}|V{\rangle _{{h_5}}}$. The item $|V{\rangle _{{h_1}}}|V{\rangle _{{h_2}}}|V{\rangle _{{h_3}}}|V{\rangle _{{h_4}}}$ can also make the detector $D_1$ click and will become $|V{\rangle _{{h_1}}}|V{\rangle _{{h_4}}}$. Therefore, after passing through the PBSs, BS and HWP, the state $|{\phi ^ + }{\rangle _{{h_1}{h_2}}}|{\phi ^ + }{\rangle _{{h_3}{h_4}}}$ will evolve to

$$\begin{aligned} |{\phi ^ + }{\rangle_{{h_1}{h_2}}}|{\phi ^ + }{\rangle _{{h_3}{h_4}}} &\to \frac{1}{{2\sqrt 2 }}{(|H\rangle _{{h_1}}}|V{\rangle _{{h_4}}}|H{\rangle _{{h_5}}}\\ &+ |V{\rangle _{{h_1}}}|H{\rangle _{{h_4}}}|V{\rangle _{{h_5}}}) + \frac{1}{4}|V{\rangle _{{h_1}}}|V{\rangle _{{h_4}}}. \end{aligned}$$

The same analysis can be done for the double-pair emissions $|{\phi ^ + }\rangle _{{h_1}{h_2}}^{ \otimes 2}$ and $|{\phi ^ + }\rangle _{{h_3}{h_4}}^{ \otimes 2}$ from SPDC sources. After above operations, they will become

$$|{\phi ^ + }\rangle _{{h_1}{h_2}}^{ {\otimes} 2}\!\to\! \frac{1}{{\sqrt 2 }}{|H\rangle _{{h_1}}}|V{\rangle _{{h_1}}}|H{\rangle _{{h_5}}} \!+\!\frac{1}{4}|V{\rangle _{{h_1}}}|V{\rangle _{{h_1}}},$$
and
$$|{\phi ^ + }\rangle _{{h_3}{h_4}}^{ {\otimes} 2}\!\to\! \frac{1}{{\sqrt 2 }}{|H\rangle _{{h_4}}}|V{\rangle _{{h_4}}}|V{\rangle _{{h_5}}} \!+\!\frac{1}{4}|V{\rangle _{{h_4}}}|V{\rangle _{{h_4}}}.$$

Then, after performing the operation ${\sigma _x} =|H\rangle \langle V| + |V\rangle \langle H|$ on the photon in spatial mode $h_4$, the remained state can be written as

$$|\textrm{Res}{\rangle _1} = |\alpha_1\rangle + |\beta_1\rangle + |\delta_1\rangle + |\gamma_1\rangle,$$
where
$$\begin{aligned} |\alpha_1\rangle \!&=\! \frac{{\sqrt p }}{{2\sqrt 2 }}|V{\rangle _{{h_1}}} + \frac{{\sqrt p }}{{2\sqrt 2 }}|H{\rangle _{{h_4}}},\\ |\beta_1\rangle \!&=\! \frac{p}{4}|V{\rangle _{{h_1}}}|H\rangle_{{h_4}} + \frac{p}{8}|V{\rangle _{{h_1}}}|V\rangle_{{h_1}} + \frac{p}{8}|H{\rangle _{{h_4}}}|H\rangle_{{h_4}},\\ |\delta_1\rangle \!&=\! \frac{p}{{2\sqrt 2 }}|H{\rangle _{{h_5}}}|H\rangle_{{h_1}}|V\rangle_{{h_1}} + \frac{p}{{2\sqrt 2 }}|V{\rangle _{{h_5}}}|H\rangle_{{h_4}}|V\rangle_{{h_4}},\\ |\gamma_1\rangle \!&=\! \frac{p}{2}|\textrm{GHZ}{\rangle _{{h_1}{h_4}{h_5}}}. \end{aligned}$$

The second resource state has the same form as Eq. (25), which can be given by

$$|\textrm{Res}{\rangle _2} = |\alpha_2\rangle \!+\! |\beta_2\rangle \!+\! |\delta_2\rangle \!+\! |\gamma_2\rangle,$$
where
$$\begin{aligned} |\alpha_2\rangle \!&=\! \frac{{\sqrt p }}{{2\sqrt 2 }}|V{\rangle _{{g_1}}} + \frac{{\sqrt p }}{{2\sqrt 2 }}|H{\rangle _{{g_4}}},\\ |\beta_2\rangle \!&=\! \frac{p}{4}|V{\rangle _{{g_1}}}|H\rangle_{{g_4}} + \frac{p}{8}|V{\rangle _{{g_1}}}|V\rangle_{{g_1}} + \frac{p}{8}|H{\rangle _{{g_4}}}|H\rangle_{g_4},\\ |\delta_2\rangle \!&=\! \frac{p}{{2\sqrt 2 }}|H{\rangle _{{g_5}}}|H\rangle_{{g_1}}|V\rangle_{{g_1}} + \frac{p}{{2\sqrt 2 }}|V{\rangle _{{g_5}}}|H\rangle_{{g_4}}|V\rangle_{{g_4}},\\ |\gamma_2\rangle \!&=\! \frac{p}{2}|\textrm{GHZ}{\rangle _{{g_1}{g_4}{g_5}}}. \end{aligned}$$

From Eq. (25) and Eq. (27), only the items $|\gamma \rangle _1$ and $|\gamma \rangle _2$ make contributions to the resource states. The other items are essentially the disturbed items which are caused by the SPDC sources. Interestingly, we will show that such disturbed items which have spurious contributions to this MB-EPP can be eliminated automatically by the coincidence measurements in spatial modes $h_1h_4h_5$ and $g_1g_4g_5$.

4.2 MB-EPP with SPDC sources

In order to realize this MB-EPP with current experimental technology, we should prepare two copies of clean input Bell states and two GHZ states. Unfortunately, the input state generated by SPDC sources can be described as

$$\begin{aligned} {\rho_{in}} &= {\rho _1} \otimes {\rho _2} \otimes {\rho _{\textrm{Res1}}} \otimes {\rho _{\textrm{Res2}}}\\ &= [|vac\rangle \langle vac| + A({\Delta _1} + {\Delta _2}) + C({\Omega _1} + {\Omega _2}) + {A^2}{\Delta _1} \otimes {\Delta _2}\\ &+ {C^2}{\Omega _1} \otimes {\Omega _2} + B{\Omega _1} \otimes {\Delta _2} + B{\Delta _1} \otimes {\Omega _2} + D(\Delta _1^{ {\otimes} 2} + \Delta _2^{ {\otimes} 2})\\ &+ E(\Omega _1^{ {\otimes} 2} + \Omega _2^{ {\otimes} 2})] \otimes {\rho _{\textrm{Res1}}} \otimes {\rho _{\textrm{Res2}}}, \end{aligned}$$
where $A = pF$, $B = {p^2}F(1 - F)$, $C = p(1 - F)$, $D = {{{p^2}F} \mathord {\left /{\vphantom {{{p^2}F} 4}} \right. } 4}$ and $E = {{{p^2}(1 - F)} \mathord {\left /{\vphantom {{{p^2}(1 - F)} 4}} \right. } 4}$. Additionally, ${\Delta _1} = |{\phi ^ + }{\rangle _{{a_1}{b_1}}}\langle {\phi ^ + }|$, ${\Delta _2} = |{\phi ^ + }{\rangle _{{a_2}{b_2}}}\langle {\phi ^ + }|$, ${\Omega _1} = |{\psi ^ + }{\rangle _{{a_1}{b_1}}}\langle {\psi ^ + }|$, ${\Omega _2} = |{\psi ^ + }{\rangle _{{a_2}{b_2}}}\langle {\psi ^ + }|$, ${\rho _{\textrm{Res1}}} = |\textrm{Res}{\rangle _1}\langle \textrm{Res}|$ and ${\rho _{\textrm{Res2}}} = |\textrm{Res}{\rangle _2}\langle \textrm{Res}|$. The item $\rho _{1}\otimes \rho _{2}$ can be described as follows. Items ${\Delta _1} + {\Delta _2}$ and ${\Omega _1} + {\Omega _2}$ are the single pair in spatial modes $a_{1}b_{1}$ or $a_{2}b_{2}$. They cannot lead the successful purification for it only contains one pair of Bell state and cannot lead four successful BSMs. ${\Delta _1} \otimes {\Delta _2}$ is in the state $|\phi ^+\rangle _{a_1b_1}|\phi ^+\rangle _{a_2b_2}$ with the probability of $p^2F^2$. ${\Omega _1} \otimes {\Omega _2}$ is in the state $|\psi ^+\rangle _{a_1b_1}|\psi ^+\rangle _{a_2b_2}$ with the probability of $p^2(1-F)^2$. ${\Omega _1} \otimes {\Delta _2}$ and ${\Delta _1} \otimes {\Omega _2}$ are in the states $|\psi ^+\rangle _{a_1b_1}|\phi ^+\rangle _{a_2b_2}$ and $|\phi ^+\rangle _{a_1b_1}|\psi ^+\rangle _{a_2b_2}$ with an equal probability of $p^2F(1-F)$. $\Delta _1^{ \otimes 2}$ and $\Delta _2^{ \otimes 2}$ are the states $|\phi ^+\rangle _{a_1b_1}^{\otimes 2}$ and $|\phi ^+\rangle _{a_2b_2}^{\otimes 2}$, which means the double-pair emission in the same spatial modes with the probability of ${{{p^2}F} \mathord {\left /{\vphantom {{{p^2}F} 4}} \right. } 4}$. If the bit-flip error occurs, they will become $\Omega _1^{ \otimes 2}$ and $\Omega _2^{ \otimes 2}$ corresponding to the states $|\psi ^+\rangle _{a_1b_1}^{\otimes 2}$ and $|\psi ^+\rangle _{a_2b_2}^{\otimes 2}$, respectively, with the probability of ${{{p^2}(1 - F)} \mathord {\left /{\vphantom {{{p^2}(1 - F)} 4}} \right. } 4}$, . Here we omit the higher order terms ($\sim p^{3}$ and $\sim p^{4}$) for $p\ll 1$. In addition, two copies of imperfect GHZ states as the resource states are described in Eq. (25) and Eq. (27).

Let’s first discuss the item $|\phi ^+\rangle _{a_1b_1}\otimes |\phi ^+\rangle _{a_2b_2}\otimes |\textrm{Res}\rangle _1\otimes |\textrm{Res}\rangle _2$. The whole state $|\Gamma _1\rangle$ generated by six SPDC sources from Fig. 4 can be written as

$$\begin{aligned} |{\Gamma \!_1}\rangle &=|{\phi ^ + }{\rangle _{{a_1}{b_1}}} \!\otimes\! |{\phi ^ + }{\rangle _{{a_2}{b_2}}} \!\otimes\! |\textrm{Res}{\rangle _1} \otimes |\textrm{Res}{\rangle _2}\\ &=|{\phi ^ + }{\rangle _{{a_1}{b_1}}}|{\phi ^ + }{\rangle _{{a_2}{b_2}}}|\alpha_1\rangle(|\alpha_2\rangle + |\beta_2\rangle + |\delta_2\rangle + |\gamma_2\rangle)\\ &+ |{\phi ^ + }{\rangle _{{a_1}{b_1}}}|{\phi ^ + }{\rangle _{{a_2}{b_2}}}|\beta_1\rangle(|\alpha_2\rangle + |\beta_2\rangle + |\delta_2\rangle +|\gamma_2\rangle)\\ &+ |{\phi ^ + }{\rangle _{{a_1}{b_1}}}|{\phi ^ + }{\rangle _{{a_2}{b_2}}}|\delta_1\rangle(|\alpha_2\rangle + |\beta_2\rangle + |\delta_2\rangle+ |\gamma_2\rangle)\\ &+ |{\phi ^ + }{\rangle _{{a_1}{b_1}}}|{\phi ^ + }{\rangle _{{a_2}{b_2}}}|\gamma_1\rangle(|\alpha_2\rangle + |\beta_2\rangle + |\delta_2\rangle+ |\gamma_2\rangle). \end{aligned}$$

The preconditions to realize this MB-EPP are the successful operation of four BSMs and the preparation of resource states. In this way, the basic principle of this MB-EPP is to pick up the "twelve-mode" case, i.e., all the BSM results are the same, such as $|\psi ^{+}\rangle$. As a consequent, we select the coincidence detection on $D_{H1}D_{V1}$, $D_{H3}D_{V3}$, $D_{H5}D_{V5}$ and $D_{H7}D_{V7}$. On the other hand, according to the mentioned above, the success preparation of resource states are heralded by one of the detectors $D_{1}D_{2}$ and $D_{3}D_{4}$ clicking one photon. Here, we select the case that $D_{1}$ and $D_{3}$ register one photon, respectively. Finally, in order to verify the successful purification, we should detect the purified photon pair in spatial modes $h_{5}$ and $g_{5}$. Hence, the new mixed entanglement with higher fidelity can be obtained by selecting the "twelve-mode" case.

From Eq. (30), it is clear that the items which contain the single photon state $|\alpha \rangle _1$ or $|\alpha \rangle _2$, two-photon state $|\beta \rangle _1$ or $|\beta \rangle _2$ cannot lead the "twelve-mode" case, for the total photon number is less than twelve. In this way, such items can be eliminated automatically. Similarly, the items which contain three-photon states $|\delta \rangle _1$ or $|\delta \rangle _2$ cannot satisfy the "twelve-mode" case, for the two photons are in the same spatial modes, i. e., $h_{1}$ or $h_{4}$ and $g_{1}$ or $g_{4}$.

For example, we discuss the item that the single-photon state is $|\alpha \rangle _1$ in $|\textrm{Res}\rangle _1$. We can obtain

$$\begin{aligned} &\quad|{\phi ^ + }{\rangle _{{a_1}{b_1}}} \otimes |{\phi ^ + }{\rangle _{{a_2}{b_2}}} \otimes |{\alpha _1}\rangle \otimes |\textrm{Res}{\rangle _2}\\ &=\frac{{\sqrt p }}{{4\sqrt 2 }}(|HHHH\rangle + |HVHV\rangle + |VHVH\rangle +|VVVV\rangle {)_{{a_1}{a_2}{b_1}{b_2}}}|V{\rangle _{{h_1}}}|\textrm{Res}{\rangle _2}\\ &+\frac{{\sqrt p }}{{4\sqrt 2 }}(|HHHH\rangle + |HVHV\rangle + |VHVH\rangle +|VVVV\rangle {)_{{a_1}{a_2}{b_1}{b_2}}}|H{\rangle _{{h_4}}}|\textrm{Res}{\rangle _2}. \end{aligned}$$

This state indicates that there is no photon either in spatial modes $h_4$ or in $h_1$ regardless of the resource state $|\textrm{Res}\rangle _2$. Meanwhile, both the spatial modes $h_5$ and $g_5$ are lack of photons, which fails to satisfy the "twelve-mode" case.

For the two-photon states such as $|VH{\rangle _{{h_1}{h_4}}}$, $|HH{\rangle _{{h_1}{h_1}}}$ and $|VV{\rangle _{{h_4}{h_4}}}$ in $|\textrm{Res}\rangle _{1}$, they can also be removed automatically according to the coincidence detection. In detail, if we combine $|\textrm{Res}{\rangle _1}$, $|\textrm{Res}{\rangle _2}$ with the input Bell states ${|{{\phi ^+}}\rangle _{{a_1}{b_1}}}$ and ${|{{\phi ^+}}\rangle _{{a_2}{b_2}}}$, we obtain

$$\begin{aligned} &\quad|{\phi ^ + }{\rangle _{{a_1}{b_1}}} \otimes |{\phi ^ + }{\rangle _{{a_2}{b_2}}} \otimes |\beta {\rangle _1} \otimes |\textrm{Res}{\rangle _2}\\ &=\frac{p}{8}(|HHHH\rangle + |HVHV\rangle + |VHVH\rangle +|VVVV\rangle {)_{{a_1}{a_2}{b_1}{b_2}}}|VH{\rangle _{{h_1}{h_4}}}|\textrm{Res}{\rangle _2}\\ &+\frac{p}{{16}}(|HHHH\rangle + |HVHV\rangle + |VHVH\rangle +|VVVV\rangle {)_{{a_1}{a_2}{b_1}{b_2}}}|V\rangle _{{h_1}}^{ {\otimes} 2}|\textrm{Res}{\rangle _2}\\ &+\frac{p}{{16}}(|HHHH\rangle + |HVHV\rangle + |VHVH\rangle +|VVVV\rangle {)_{{a_1}{a_2}{b_1}{b_2}}}|H\rangle _{{h_4}}^{ {\otimes} 2}|\textrm{Res}{\rangle _2}, \end{aligned}$$
which shows that it is always lack of the photons in spatial modes $h_5$ and $g_5$ in the first resource state $|\textrm{Res}\rangle _1$. In this case, even if the second resource state is perfect GHZ state, the twelve-mode case still cannot be satisfied. Hence, it fails to fulfill the selection condition and can be eliminated automatically.

For the three-photon states such as $|HHV{\rangle _{{h_5}{h_1}{h_1}}}$ and $|VHV{\rangle _{{h_5}{h_4}{h_4}}}$ in $|\textrm{Res}\rangle _1$, they also fail to satisfy the "twelve-mode" case. For example,

$$\begin{aligned} &\quad|{\phi ^ + }{\rangle _{{a_1}{b_1}}} \otimes |{\phi ^ + }{\rangle _{{a_2}{b_2}}} \otimes |{\delta _1}\rangle \otimes |\textrm{Res}{\rangle _2}\\ &=\frac{{\sqrt p }}{{4\sqrt 2 }}(|HHHH\rangle + |HVHV\rangle + |VHVH\rangle\\ &+|VVVV\rangle {)_{{a_1}{a_2}{b_1}{b_2}}}|HHV{\rangle _{{h_5}{h_1}{h_1}}}|\textrm{Res}{\rangle _2}\\ &+\frac{{\sqrt p }}{{4\sqrt 2 }}(|HHHH\rangle + |HVHV\rangle + |VHVH\rangle\\ &+|VVVV\rangle {)_{{a_1}{a_2}{b_1}{b_2}}}|VHV{\rangle _{{h_5}{h_4}{h_4}}}|\textrm{Res}{\rangle _2}. \end{aligned}$$

One can clearly observe from Eq. (33) that no matter what is the second resource state $|\textrm{Res}\rangle _2$, the absence of photons in spatial modes $h_4$ or $h_1$ will result in a failure in BSMs. Therefore, such three-photon items can also be eliminated automatically.

If the first resource state is $|\gamma _1\rangle$, we can obtain

$$\begin{aligned} &\quad|{\phi ^ + }{\rangle _{{a_1}{b_1}}} \otimes |{\phi ^ + }{\rangle _{{a_2}{b_2}}} \otimes |{\gamma _1}\rangle \otimes |\textrm{Res}{\rangle _2}\\ &=\frac{p}{4}(|HHHH\rangle + |HVHV\rangle + |VHVH\rangle\\ &+|VVVV\rangle {)_{{a_1}{a_2}{b_1}{b_2}}}|\textrm{GHZ}{\rangle _{{h_1}{h_4}{h_5}}}(|{\alpha _2}\rangle + |{\beta _2}\rangle + |{\delta _2}\rangle )\\ &+\frac{{{p^2}}}{8}(|HHHH\rangle + |HVHV\rangle + |VHVH\rangle\\ &+|VVVV\rangle {)_{{a_1}{a_2}{b_1}{b_2}}}|\textrm{GHZ}{\rangle _{{h_1}{h_4}{h_5}}}|\textrm{GHZ}{\rangle _{{g_1}{g_4}{g_5}}}. \end{aligned}$$

Similarly, the items in Eq. (34) which contain single-photon state $|\alpha _2\rangle$, two-photon state $|\beta _2\rangle$ or three-photon state $|\delta _2\rangle$ can be removed automatically with the same principle as Eqs. (31), (32), and (33). Only the item $|{\phi ^ + }{\rangle _{{a_1}{b_1}}} \otimes |{\phi ^ + }{\rangle _{{a_2}{b_2}}}\otimes |\gamma _1\rangle \otimes \!|\gamma _2\rangle \!$, i.e., the perfect Bell states combined with GHZ states can lead the "twelve-mode" case, which will collapse to

$$|{\phi ^ + }{\rangle _{{g_5}{h_5}}} = \frac{1}{{\sqrt 2 }}{(|HH\rangle _{{g_5}{h_5}}} + |VV{\rangle _{{g_5}{h_5}}}).$$

Similarly, item $|{\psi ^ + }{\rangle _{{a_1}{b_1}}} \otimes |{\psi ^ + }{\rangle _{{a_2}{b_2}}} \otimes |\textrm{Res}{\rangle _1} \otimes |\textrm{Res}{\rangle _2}$ can be discussed with the same principle. Only the item $|{\psi ^ + }{\rangle _{{a_1}{b_1}}} \otimes |{\psi ^ + }{\rangle _{{a_2}{b_2}}} \otimes |\textrm{GHZ}{\rangle _{h_1h_4h_5}} \otimes |\textrm{GHZ}{\rangle _{g_1g_4g_5}}$ can satisfy the "twelve-mode" case and will collapse to

$$|{\psi ^ + }{\rangle _{{g_5}{h_5}}} = \frac{1}{{\sqrt 2 }}{(|HV\rangle _{{g_5}{h_5}}} + |VH{\rangle _{{g_5}{h_5}}}).$$

In addition, the items $|\phi ^+\rangle _{a_1b_1}|\psi ^+\rangle _{a_2b_2}\otimes |\textrm{Res}{\rangle _1} \otimes |\textrm{Res}{\rangle _2}$ and $|\psi ^+\rangle _{a_1b_1}|\phi ^+\rangle _{a_2b_2}\otimes |\textrm{Res}{\rangle _1} \otimes |\textrm{Res}{\rangle _2}$ in input state $\rho _{in}$ can be automatically eliminated because of the basic purification principle.

Finally, let us discuss the double-pair emissions $|{{\phi ^+}}\rangle _{a_{1}b_{1}}^{\otimes 2}(|{{\psi ^+}}\rangle _{a_{1}b_{1}}^{\otimes 2})$ and $|{{\phi ^+}}\rangle _{a_{2}b_{2}}^{\otimes 2}(|{{\psi ^+}}\rangle _{a_{1}b_{1}}^{\otimes 2})$ in input state $\rho _{in}$. For example, the state $|{{\phi ^+}}\rangle _{a_{1}b_{1}}^{\otimes 2}$ combined with the two resource states can be described as

$$\begin{aligned} |{\Gamma _2}\rangle &= |{\phi ^ + }\rangle _{{a_1}{b_1}}^{ {\otimes} 2} \otimes |\textrm{Res}{\rangle _1} \otimes |\textrm{Res}{\rangle _2}\\ &=|{\phi ^ + }\rangle _{{a_1}{b_1}}^{ {\otimes} 2}|{\alpha _1}\rangle (|{\alpha _2}\rangle + |{\beta _2}\rangle + |{\delta _2}\rangle + |{\gamma _2}\rangle )\\ &+|{\phi ^ + }\rangle _{{a_1}{b_1}}^{ {\otimes} 2}|{\beta _1}\rangle (|{\alpha _2}\rangle + |{\beta _2}\rangle + |{\delta _2}\rangle + |{\gamma _2}\rangle )\\ &+|{\phi ^ + }\rangle _{{a_1}{b_1}}^{ {\otimes} 2}|{\delta _1}\rangle (|{\alpha _2}\rangle + |{\beta _2}\rangle + |{\delta _2}\rangle + |{\gamma _2}\rangle )\\ &+|{\phi ^ + }\rangle _{{a_1}{b_1}}^{ {\otimes} 2}|{\gamma _1}\rangle (|{\alpha _2}\rangle + |{\beta _2}\rangle + |{\delta _2}\rangle + |{\gamma _2}\rangle ). \end{aligned}$$

Obviously, the state in Eq. (37) shows that both the spatial modes $a_2$ and $b_2$ are lack of photons, which will be a failure in the BSMs. In this way, such double-pair emissions of noisy inputs can be automatically removed according to the final coincidence detection. Here, if the spatial modes $g_{1}$ and $g_{4}$ have extra photons, they can still lead successful BSMs. Such successful cases with disturbed items will cause error items for final purification. Fortunately, from Eqs. (25) and (27), states $|\textrm{Res}\rangle _{1}$ and $|\textrm{Res}\rangle _{2}$ cannot contribute to such extra photons.

According to above detailed analysis, only the items $|{\phi ^ + }{\rangle _{{a_1}{b_1}}} \otimes |{\phi ^ + }{\rangle _{{a_2}{b_2}}} \otimes |\textrm{GHZ}{\rangle _{h_1h_4h_5}} \otimes |\textrm{GHZ}{\rangle _{g_1g_4g_5}}$ and $|{\psi ^ + }{\rangle _{{a_1}{b_1}}} \otimes |{\psi ^ + }{\rangle _{{a_2}{b_2}}} \otimes |\textrm{GHZ}{\rangle _{h_1h_4h_5}} \otimes |\textrm{GHZ}{\rangle _{g_1g_4g_5}}$ in the input state $\rho _{in}$ can lead to the "twelve-mode" case which lead to an output state ${\rho _{{g_5}{h_5}}}$ as

$${\rho _{{g_5}{h_5}}} = {F_2}|{\phi ^ + }{\rangle _{{g_5}{h_5}}}\langle {{\phi ^ + }} | + (1 - {F_2})|{\psi ^ + }{\rangle _{{g_5}{h_5}}}\langle {{\psi ^ + }}|,$$
where $F_2$ is given by Eq. (8).

5. Discussion and conclusion

So far, we have completely explained this MB-EPP for correcting the bit-flip error in linear optics. Similar to existing EPPs [35,37,38], this MB-EPP cannot directly purify phase-flip error. The phase-flip error should be firstly transformed to the bit-flip error with the help of the Hadamard operations, and then be corrected by the above method in the next step. In a practical scenario, bit-flip and phase-flip errors may occur simultaneously, which makes the state $|\phi ^+\rangle$ degrade to

$${\rho _o} = A|{\phi ^ + }\rangle\langle {{\phi ^ + }}| + B|{\phi ^ - }\rangle\langle {{\phi ^ - }}| + C|{\psi ^ + }\rangle\langle {{\psi ^ + }}| + D|{\psi ^ - }\rangle\langle {{\psi ^ - }}|,$$
where $A + B + C + D = 1$. After one round of this MB-EPP, the parties can distill a new mixed state with the form of
$$\begin{aligned} {\rho _n} &= \frac{{{A^2} + {B^2}}}{{{{(A + B)}^2} + {{(C + D)}^2}}}|{\phi ^ + }\rangle\langle {{\phi ^ + }}| + \frac{{2AB}}{{{{(A + B)}^2} + {{(C + D)}^2}}}|{\phi ^ - }\rangle\langle {{\phi ^ - }}|\\ &+ \frac{{{C^2} + {D^2}}}{{{{(A + B)}^2} + {{(C + D)}^2}}}|{\psi ^ + }\rangle\langle {{\psi ^ + }}| + \frac{{2CD}}{{{{(A + B)}^2} + {{(C + D)}^2}}}|{\psi ^ - }\rangle\langle {{\psi ^ - }}|. \end{aligned}$$

If $A>0.5$, the fidelity of $|{\phi ^ + }\rangle$ in Eq. (40) is larger than that of Eq. (39).

The key element in this MB-EPP is the BSM coupling the noisy pairs with the resource states. However, the probability of BSM in linear optics cannot exceed $0.5$ [71,72], which limits the efficiency of this MB-EPP. Actually, if we use the complete BSM [76] where the parity-check gates were respectively constructed in spatial and polarization degrees of freedom, the efficiency of MB-EPP can be improved but the fidelity will not change. Recently, some parity-check gates with cross-Kerr nonlinearity [77,78] and Rydberg atoms [7983] were constructed. In 2020, the Ref. [81] achieved two-qubit nondestructive Rydberg parity meter (NRPM) using Rydberg atoms and applied the complete BSM to the quantum teleportation using the NRPM. Furthermore, the complete and nondestructive distinguishment of many-body Rydberg entanglement was realized using Rydberg atoms [82]. Consequently, the recent experimental progress would promote the experimental realization of our MB-EPP.

In practical experiment, the main challenge comes from the multi-photon entanglement. We require to generate two copies of mixed states and two copies of GHZ states. In this way, six SPDC sources are required to generate six pairs of two-photon Bell states simultaneously. Fortunately, the technology of multi-photon entanglement have been well developed in the last decade. For example, in Ref. [84], they reported the 12-photon entanglement generation using six SPDC sources. Their entangled-photon source shows simultaneously 97% heralding efficiency and 96% indistinguishability between independent single photons without narrow-band filtering. Moreover, two-dimensional metasurfaces have shown great potential in quantum-optical technologies. Li et al. reported a 100-path SPDC sources in a 10$\times$10 array by integrating a metalens array with a nonlinear crystal [85]. Such compact, stable and controllable metalens-array-based quantum photon source may also provide the potential to realize this MB-EPP.

In conclusion, we have proposed a feasible MB-EPP with linear optical elements based on the original works in Refs. [70,73]. We first take a simple example to describe the basic principle of MB-EPP in two-copy case. We show that the original MB-EPP is feasible in linear optics. Subsequently, we extend it to the multi-copy case. Finally, we design a possible experiment realization of such MB-EPP in current experiment condition. Especially, we provide the analysis on the realization of this MB-EPP with practical SPDC sources. We show that the SPDC source is not an obstacle and the double-pair emission noise caused by the SPDC sources can be eliminated according to the coincidence detection. Combined with the suitable quantum memory and entanglement swapping, this MB-EPP may have the potential to become a building block in measurement-based quantum repeater.

Appendix A: The detailed analysis of our MB-EPP for two noisy copies

In this Appendix, we give the detailed analysis of our MB-EPP for two noisy copies. As mentioned above, the whole mixed states of two noisy copies can be described as follows. It is in the state $|{\phi ^ + }{\rangle _{{a_1}{b_1}}}|{\phi ^ + }{\rangle _{{a_2}{b_2}}}$ and $|{\psi ^ + }{\rangle _{{a_1}{b_1}}}|{\psi ^ + }{\rangle _{{a_2}{b_2}}}$ with the probability of $F^2$ and $(1-F)^2$, respective. With an equal probability of $F(1-F)$, the system is in the state $|{\psi ^ + }{\rangle _{{a_1}{b_1}}}|{\phi ^ + }{\rangle _{{a_2}{b_2}}}$ and $|{\phi ^ + }{\rangle _{{a_1}{b_1}}}|{\psi ^ + }{\rangle _{{a_2}{b_2}}}$.

We first discuss the item $|{\phi ^ + }{\rangle _{{a_1}{b_1}}}|{\phi ^ + }{\rangle _{{a_2}{b_2}}}$. Therefore, with the probability of $F^2$, the state $\rho _{{a_1}{b_1}}\otimes \rho _{{a_2}{b_2}}\otimes |\textrm{GHZ}\rangle _{{g_1}{g_2}{g_3}}\otimes |\textrm{GHZ}\rangle _{{h_1}{h_2}{h_3}}$ can be written as

$$\begin{aligned} &\quad|{\phi ^ + }{\rangle _{{a_1}{b_1}}}|{\phi ^ + }{\rangle _{{a_2}{b_2}}}|\textrm{GHZ}{\rangle _{{g_1}{g_2}{g_3}}}|\textrm{GHZ}{\rangle _{{h_1}{h_2}{h_3}}}\\ &=\frac{1}{{16}}|HH{\rangle _{{g_3}{h_3}}}{[{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }\rangle})_{g_1a_1}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle})_{g_2a_2}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle})_{h_1b_1}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle})_{h_2b_2}\\ &+{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle})_{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle})_{{g_2}{a_2}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle})_{{h_2}{b_2}}\\ &+{(|{\psi ^ + }\rangle}\!+\! |{\psi ^ - }{\rangle})_{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\psi ^ + }\rangle }\!+\! |{\psi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\phi ^ + }\rangle }\!+\! |{\phi ^ - }{\rangle})_{{h_2}{b_2}}\\ &+{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle})_{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle})_{{g_2}{a_2}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle})_{{h_2}{b_2}}]\\ &+\frac{1}{{16}}|HV{\rangle _{{g_3}{h_3}}}{[{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle })_{{g_2}{a_2}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\phi ^ + }\rangle}\!+\! |{\phi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle})_{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}]\\ &+\frac{1}{{16}}|VH{\rangle _{{g_3}{h_3}}}{[{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }\rangle})_{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle }) _{{g_2}{a_2}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle } \!-\! |{\phi ^ - }{\rangle})_{{g_2}{a_2}}{(|{\phi ^ + }\rangle } \!+\! |{\phi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\phi ^ + }\rangle } \!-\! |{\phi ^ - }{\rangle})_{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\psi ^ + }\rangle } \!+ \!|{\psi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\psi ^ + }\rangle } \!+\! |{\psi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{h_2}{b_2}}]\\ &+\frac{1}{{16}}|VV{\rangle _{{g_3}{h_3}}}{[{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }\rangle}) _{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle }) _{{g_2}{a_2}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\psi ^ + }\rangle } \!-\! |{\psi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\psi ^ + }\rangle}\!-\!|{\psi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\phi ^ + }\rangle } \!-\! |{\phi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\phi ^ + }\rangle } \!-\! |{\phi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\phi ^ + }\rangle}\! - \!|{\phi ^ - }{\rangle}) _{{h_2}{b_2}}]. \end{aligned}$$

Due to the fact that the standard BSM [71,72] can only distinguish two of the four Bell states, i.e., $|\psi ^{\pm }\rangle$, only the items $|{\phi ^ + }{\rangle _{{a_1}{b_1}}}|{\phi ^ + }{\rangle _{{a_2}{b_2}}}|\textrm{GHZ}{\rangle _{{g_1}{g_2}{g_3}}}|\textrm{GHZ}{\rangle _{{h_1}{h_2}{h_3}}}$ contributes to this MB-EPP, which can be written as

$$\begin{aligned} &\quad(|HH\rangle + |VV\rangle {)_{{g_3}{h_3}}}(|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle + |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+ |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle + |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle + |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle + |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle + |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+(|HH\rangle - |VV\rangle {)_{{g_3}{h_3}}}(|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle + |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle)\\ &+|{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle + |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle + |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle + |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle + |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle ). \end{aligned}$$

According to Eq. (42), if the number of $|\psi ^-\rangle$ is even, i.e., $|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle$, the remained state is

$$|{\phi ^ + }{\rangle _{{g_3}{h_3}}} = \frac{1}{{\sqrt 2 }}{(|HH\rangle _{{g_3}{h_3}}} + |VV{\rangle _{{g_3}{h_3}}}).$$

While if the number of $|\psi ^-\rangle$ is odd, i.e., $|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle$, the state in Eq. (42) evolves to

$$|{\phi ^ - }{\rangle _{{g_3}{h_3}}} = \frac{1}{{\sqrt 2 }}{(|HH\rangle _{{g_3}{h_3}}} - |VV{\rangle _{{g_3}{h_3}}}),$$
which can be transformed to $|\phi ^+\rangle _{{g_3}{h_3}}$ by adding a phase-flip operation on one of photons.

With the probability of $(1-F)^2$, the whole mixed state is in $|\psi ^+\rangle _{{a_1}{b_1}}|\psi ^+\rangle _{{a_2}{b_2}}\otimes |\textrm{GHZ}\rangle _{{g_1}{g_2}{g_3}}\otimes |\textrm{GHZ}\rangle _{{h_1}{h_2}{h_3}}$. Similar to Eq. (41), by performing successful BSMs, we can obtain

$$|{\psi ^ + }{\rangle _{{g_3}{h_3}}} = \frac{1}{{\sqrt 2 }}{(|HV\rangle _{{g_3}{h_3}}} + |VH{\rangle _{{g_3}{h_3}}}),$$
if the number of $|\psi ^-\rangle$ is even. While if the number of $|\psi ^-\rangle$ is odd, we can obtain
$$|{\psi ^ - }{\rangle _{{g_3}{h_3}}} = \frac{1}{{\sqrt 2 }}{(|HV\rangle _{{g_3}{h_3}}} - |VH{\rangle _{{g_3}{h_3}}}).$$
$|\psi ^-\rangle _{{g_3}{h_3}}$ can evolve to $|\psi ^+\rangle _{{g_3}{h_3}}$ after the parties adding a phase-flip operation on one of photons.

On the other hand, based on the measurement outcomes, the state $|\phi ^+\rangle _{{a_1}{b_1}}|\psi ^+\rangle _{{a_2}{b_2}}$ and $|\psi ^+\rangle _{{a_1}{b_1}}|\phi ^+\rangle _{{a_2}{b_2}}$ can be deterministically removed. For example, the state $|\phi ^+\rangle _{{a_1}{b_1}}|\psi ^+\rangle _{{a_2}{b_2}}$ combined with two resource states $|\textrm{GHZ}\rangle _{{g_1}{g_2}{g_3}}$ and $|\textrm{GHZ}\rangle _{{h_1}{h_2}{h_3}}$ can be written as

$$\begin{aligned} &\quad|{\phi ^ + }{\rangle _{{a_1}{b_1}}}|{\psi ^ + }{\rangle _{{a_2}{b_2}}}|\textrm{GHZ}{\rangle _{{g_1}{g_2}{g_3}}}|\textrm{GHZ}{\rangle _{{h_1}{h_2}{h_3}}}\\ &=\frac{1}{{16}}|HH{\rangle _{{g_3}{h_3}}}{[{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }\rangle})_{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle })_{{g_2}{a_2}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle})_{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\phi ^ + }\rangle } \!+\! |{\phi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\psi ^ + }\rangle } \!+\! |{\psi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle})_{{g_2}{a_2}}{(|{\psi ^ + }\rangle } \!+\! |{\psi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}]\\ &+\frac{1}{{16}}|HV{\rangle _{{g_3}{h_3}}}{[{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle })_{{g_2}{a_2}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\psi ^ + }\rangle } \!-\! |{\psi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle })_{{h_2}{b_2}}\\ &+{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\phi ^ + }\rangle } \!-\! |{\phi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\phi ^ + }\rangle } \!-\! |{\phi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle})_{{h_2}{b_2}}]\\ &+\frac{1}{{16}}|VH{\rangle _{{g_3}{h_3}}}{[{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }\rangle}) _{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle })_{{g_2}{a_2}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\phi ^ + }\rangle } \!+\! |{\phi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\phi ^ + }\rangle} \!+\! |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\phi ^ + }\rangle}\! -\! |{\phi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\psi ^ + }\rangle } \!+\! |{\psi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!+\! |{\psi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\psi ^ + }\rangle } + |{\psi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\phi ^ + }\rangle} + |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}]\\ &+\frac{1}{{16}}|VV{\rangle _{{g_3}{h_3}}}{[{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }\rangle})_{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle })_{{g_2}{a_2}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle})_{{h_1}{b_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\psi ^ + }\rangle } \!-\! |{\psi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\phi ^ + }\rangle } \!-\! |{\phi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{h_2}{b_2}}\\ &+{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_1}{a_1}}{(|{\phi ^ + }\rangle} \!-\! |{\phi ^ - }{\rangle}) _{{g_2}{a_2}}{(|{\phi ^ + }\rangle } \!-\! |{\phi ^ - }{\rangle}) _{{h_1}{b_1}}{(|{\psi ^ + }\rangle} \!-\! |{\psi ^ - }{\rangle}) _{{h_2}{b_2}}]. \end{aligned}$$

From Eq. (47), we fail to obtain that all the four BSM results are $|\psi ^{\pm }\rangle$. At least one of the BSM result is $|\phi ^{\pm }\rangle$, which is a failure in the BSM in linear optics. In this way, it can be eliminated automatically. The same analysis can be carried out for the state $|\phi ^+\rangle _{{a_1}{b_1}}|\psi ^+\rangle _{{a_2}{b_2}}|\textrm{GHZ}\rangle _{{g_1}{g_2}{g_3}}|\textrm{GHZ}\rangle _{{h_1}{h_2}{h_3}}$. Hence, after performing MB-EPP on two mixed pairs, we can obtain a new mixed state entangled in ${g_3}{h_3}$ with a higher fidelity.

Appendix B: The detailed analysis of our MB-EPP for three noisy copies

This Appendix shows the analysis of our MB-EPP for three noisy copies. The whole mixed state $\rho _{{a_1}{b_1}}\otimes \rho _{{a_2}{b_2}}\otimes \rho _{{a_3}{b_3}}$ is made up of eight pure states as described in the main text. Here, we only discuss the state $|\phi ^+\rangle _{{a_1}{b_1}}|\phi ^+\rangle _{{a_2}{b_2}}|\phi ^+\rangle _{{a_3}{b_3}}$. The analysis for the other remaining items of $\rho _{{a_1}{b_1}}\otimes \rho _{{a_2}{b_2}}\otimes \rho _{{a_3}{b_3}}$ can be done by the same way. With the probability of $F^3$, state $\rho _{{a_1}{b_1}}\otimes \rho _{{a_2}{b_2}}\otimes \rho _{{a_3}{b_3}}\otimes |\textrm{GHZ}\rangle _{{g_1}{g_2}{g_3}{g_4}}\otimes |\textrm{GHZ}\rangle _ {{h_1}{h_2}{h_3}{h_4}}$ is in

$$\begin{aligned} &\quad|{\phi ^ + }{\rangle _{{a_1}\!{b_1}}}|{\phi ^ + }{\rangle _{{a_2}{b_2}}}|{\phi ^ + }{\rangle _{{a_3}{b_3}}}|\textrm{GHZ}{\rangle _{{g_1}{g_2}{g_3}{g_4}}} |\textrm{GHZ}{\rangle _{{h_1}{h_2}{h_3}{h_4}}}\\ &={(|HH\rangle} + |VV{\rangle})_{{a_1}{b_1}}{(|HH\rangle} + |VV{\rangle})_{{a_2}{b_2}} {(|HH\rangle}+|VV{\rangle})_{{a_3}{b_3}}\\ &{(|HHHH\rangle}+|VVVV{\rangle})_{{g_1}{g_2}{g_3}{g_4}}{(|HHHH\rangle} + |VVVV{\rangle})_{{h_1}{h_2}{h_3}{h_4}}. \end{aligned}$$

Based on the fact that only $|\psi ^{\pm }\rangle$ can be distinguished, we can obtain the items of Eq. (48) which can contribute to four successful BSMs as

$$\begin{aligned} &|HH{\rangle _{{g_4}{h_4}}}|HV{\rangle _{{g_1}{a_1}}}|HV{\rangle _{{g_2}{a_2}}}|HV{\rangle _{{g_3}{a_3}}}|HV{\rangle _{{h_1}{b_1}}}|HV{\rangle _{{h_2}{b_2}}}|HV{\rangle _{{h_3}{b_3}}}\\ &+|VV{\rangle _{{g_4}{h_4}}}|VH{\rangle _{{g_1}{a_1}}}|VH{\rangle _{{g_2}{a_2}}}|VH{\rangle _{{g_3}{a_3}}}|VH{\rangle _{{h_1}{b_1}}}|VH{\rangle _{{h_2}{b_2}}}|VH{\rangle _{{h_3}{b_3}}}. \end{aligned}$$

Subsequently, we rewrite Eq. (49) by substituting Bell basis $\{ |{\phi ^ \pm }\rangle , |{\psi ^ \pm }\rangle \}$ for $\{ |H\rangle , |V\rangle \}$. Hence, we can obtain

$$\begin{aligned} (|HH\rangle \!\!+\!\! |VV\rangle)_{{g_3}{h_3}}&(|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!+\! |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle)\\ +(|HH\rangle \!\!-\!\! |VV\rangle {)_{{g_3}{h_3}}}&(|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle\\ &+|{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle \!\!+\!\! |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle). \end{aligned}$$

One can clearly observe from Eq. (50) that if the number of sign "$-$" in BSM results is even, i.e., $|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle$, the state in Eq. (50) will collapse to

$$|{\phi ^ + }{\rangle _{{g_4}{h_4}}} = \frac{1}{{\sqrt 2 }}{(|HH\rangle _{{g_4}{h_4}}} + |VV{\rangle _{{g_4}{h_4}}}).$$

On the contrary, if the number of sign "$-$" is odd, i.e., $|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ - }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle$, the state in Eq. (50) will evolve to

$$|{\phi ^ - }{\rangle _{{g_4}{h_4}}} = \frac{1}{{\sqrt 2 }}{(|HH\rangle _{{g_4}{h_4}}} - |VV{\rangle _{{g_4}{h_4}}}),$$
which can be converted to $|{\phi ^ + }{\rangle _{{g_4}{h_4}}}$ by the phase-flip operation.

Similarly, with the probability of $(1-F)^3$, $\rho _{{a_1}{b_1}}\otimes \rho _{{a_2}{b_2}}\otimes \rho _{{a_3}{b_3}}\otimes |\textrm{GHZ}\rangle _{{g_1}{g_2}{g_3}{g_4}}\otimes |\textrm{GHZ}\rangle _{{h_1}{h_2}{h_3}{h_4}}$ is in

$$\begin{aligned} &|{\psi ^ + }{\rangle _{{a_1}{b_1}}}|{\psi ^ + }{\rangle _{{a_2}{b_2}}}|{\psi ^ + }{\rangle _{{a_3}{b_3}}}|GHZ{\rangle _{{g_1}{g_2}{g_3}{g_4}}} |GHZ{\rangle _{{h_1}{h_2}{h_3}{h_4}}}\\ &={(|HV\rangle} + |VH\rangle)_{a_1b_1}{(|HV\rangle} + |VH\rangle)_{a_2b_2}{(|HV\rangle} + |VH{\rangle})_{a_3b_3}\\ &{(|HHHH\rangle}+|VVVV{\rangle})_{{g_1}{g_2}{g_3}{g_4}}{(|HHHH\rangle} + |VVVV{\rangle })_{{h_1}{h_2}{h_3}{h_4}}. \end{aligned}$$

After performing the BSMs on the photons in modes $g_{1}a_{1}$, $g_{2}a_{2}$, $g_{3}a_{3}$, $h_{1}b_{1}$, $h_{2}b_{2}$ and $h_{3}b_{3}$ and selecting the cases where all the outcomes are $|\psi ^{+}\rangle$ or $|\psi ^{-}\rangle$ , we can obtain

$$|{\psi ^ + }{\rangle _{{g_4}{h_4}}} = \frac{1}{{\sqrt 2 }}{(|HV\rangle _{{g_4}{h_4}}} + |VH{\rangle _{{g_4}{h_4}}}),$$
if the number of BSM outcomes $|\psi ^-\rangle$ is even. In addition, we can obtain
$$|{\psi ^ - }{\rangle _{{g_4}{h_4}}} = \frac{1}{{\sqrt 2 }}{(|HV\rangle _{{g_4}{h_4}}} - |VH{\rangle _{{g_4}{h_4}}}),$$
if the number of BSM outcomes $|\psi ^-\rangle$ is odd. $|{\psi ^ - }{\rangle _{{g_4}{h_4}}}$ can be converted to $|{\psi ^ + }{\rangle _{{g_4}{h_4}}}$ by performing the phase-flip operation.

Similarly, the cross-combination items cannot make all the BSM results be $|\psi ^\pm \rangle$ and can be eliminated automatically. Finally, we can obtain the new mixed state as

$${\rho _{{g_4}{h_4}}}=\frac{{{F^3}}}{{{F^3} + {{(1 - F)}^3}}}|{\phi ^ + }{\rangle _{{g_4}{h_4}}}\langle {{\phi ^ + }}|+\frac{{{{(1 - F)}^3}}}{{{F^3} + {{(1 - F)}^3}}}|{\psi ^ + }{\rangle _{{g_4}{h_4}}}\langle {{\psi ^ + }}|.$$

Appendix C: The detailed analysis of our MB-EPP for multiple noisy copies

Base on the discussion aforementioned, we can easily obtain the fidelity of resultant state for $N$ noisy pairs by performing our MB-EPP. In detail, the whole system can be described as

$$\begin{aligned} {\rho _t}&={\rho _{{a_1}{b_1}}} \otimes {\rho _{{a_2}{b_2}}} \otimes \cdots \otimes {\rho _{{a_{N - 1}}{b_{N - 1}}}} \otimes {\rho _{{a_N}{b_N}}}\\ &=\sum_{m = 0}^N {{F^m}} {(1 - F)^{N - m}}P(m), \end{aligned}$$
where $P(m)$ denotes the permutation of $m$ pairs of $|{\phi ^+}\rangle$ and $N-m$ pairs of $|{\psi ^+}\rangle$. For example, if $N=3$, $m=1$, $P(1)$ consists of $|{\phi ^ + }\rangle |{\psi ^ + }\rangle |{\psi ^ + }\rangle$, $|{\psi ^ + }\rangle |{\phi ^ + }\rangle |{\psi ^ + }\rangle$ and $|{\psi ^ + }\rangle |{\psi ^ + }\rangle |{\phi ^ + }\rangle$. Therefore, $P(m)$ contains $m$ even-parity states and $N-m$ odd-parity states, which causes the outcomes of BSMs in $g_{i}a_{i}$ or $h_{i}b_{i}$ modes ($i=1,2, \ldots , N-1$) to be different at the same time. Only the cases that $m=N$ corresponding to ${F^N}|{\phi ^+}{\rangle _{{a_1}{b_1}}}|{\phi ^+}{\rangle _{{a_2}{b_2}}}\cdots |{\phi ^+}{\rangle _{{a_N}{b_N}}}$ and $m=0$ corresponding to ${(1-F)^N}|{\psi ^+}{\rangle _{{a_1}{b_1}}}|{\psi ^+}{\rangle _{{a_2}{b_2}}}\cdots |{\psi ^+}{\rangle _{{a_N}{b_N}}}$ contribute to the successful purification. Similar to the purification for two and three noisy pairs, if the number of BSM results $|\psi ^-\rangle$ is even, the new mixed state can be obtained as
$$\begin{aligned} {\rho _{{g_{N + 1}}{h_{N + 1}}}}&=\frac{{{F^N}}}{{{F^N} + {{(1 - F)}^N}}}|{\phi ^ + }{\rangle _{{g_{N + 1}}{h_{N + 1}}}}\langle {\phi ^ + }|\\ &+\frac{{{{(1 - F)}^N}}}{{{F^N} + {{(1 - F)}^N}}}|{\psi ^ + }{\rangle _{{g_{N + 1}}{h_{N + 1}}}}\langle {\psi ^ + }|. \end{aligned}$$

While if the number of BSM results $|\psi ^-\rangle$ is odd, we can obtain

$$\begin{aligned} {\rho ^p_{{g_{N + 1}}{h_{N + 1}}}}&=\frac{{{F^N}}}{{{F^N} + {{(1 - F)}^N}}}|{\phi ^ - }{\rangle _{{g_{N + 1}}{h_{N + 1}}}}\langle {\phi ^ - }|\\ &+\frac{{{{(1 - F)}^N}}}{{{F^N} + {{(1 - F)}^N}}}|{\psi ^ - }{\rangle _{{g_{N + 1}}{h_{N + 1}}}}\langle {\psi ^ - }|. \end{aligned}$$

Subsequently, the state $\rho _{{g_{N + 1}}{h_{N + 1}}}^p$ can be transformed to $\rho _{{g_{N + 1}}{h_{N+1}}}$ by adding the phase-flip operation.

Funding

National Natural Science Foundation of China (11974189); Graduate Research and Innovation Projects of Jiangsu Province (KYCX20-0731); Priority Academic Program Development of Jiangsu Higher Education Institutions.

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991). [CrossRef]  

2. M. Hillery, V. Buźek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59(3), 1829–1834 (1999). [CrossRef]  

3. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65(3), 032302 (2002). [CrossRef]  

4. F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein- Podolsky-Rosen pair block,” Phys. Rev. A 68(4), 042317 (2003). [CrossRef]  

5. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017). [CrossRef]  

6. M. Mastriani and S. S. Iyengar, “Satellite quantum repeaters for a quantum internet,” Quan. Engin. 2(4), e55 (2020).

7. G. J. Fan-Yuan, S. Wang, Z. Q. Yin, W. Chen, D. Y. He, G. C. Guo, and Z. F. Han, “Afterpulse analysis for passive decoy quantum key distribution,” Quan. Engin. 2(4), e56 (2020). [CrossRef]  

8. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018). [CrossRef]  

9. X. L. Su, M. H. Wang, Z. H. Yan, X. J. Jia, C. D. Xie, and K. C. Peng, “Quantum network based on non-classical light,” Sci. China Inf. Sci. 63(8), 180503 (2020). [CrossRef]  

10. Y. B. Sheng and L. Zhou, “Distributed secure quantum machine learning,” Sci. Bull. 62(14), 1025–1029 (2017). [CrossRef]  

11. H. L. Huang, Q. Zhao, X. F. Ma, C. Liu, Z. E. Su, X. L. Wang, L. Li, N. L. Liu, B. C. Sanders, C. Y. Lu, and J. W. Pan, “Experimental blind quantum computing for a classical client,” Phys. Rev. Lett. 119(5), 050503 (2017). [CrossRef]  

12. Y. B. Sheng and L. Zhou, “Blind quantum computation with a noise channel,” Phys. Rev. A 98(5), 052343 (2018). [CrossRef]  

13. N. N. Liu, T. F. Demarie, S. H. Tan, L. Lolita, and J. F. Fitzsimons, “Client-friendly continuous-variable blind and verifiable quantum computing,” Phys. Rev. A 100(6), 062309 (2019). [CrossRef]  

14. S. M. Fei, “Entanglement in IBMQ superconducting quantum computer with 53 qubits,” Quan. Engin. 2(3), e48 (2020). [CrossRef]  

15. Q. S. Xu, X. Q. Tan, R. Huang, and X. D. Zeng, “Parallel self-testing for device-independent verifiable blind quantum computation,” Quan. Engin. 2(3), e51 (2020). [CrossRef]  

16. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998). [CrossRef]  

17. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optic,” Nature 414(6862), 413–418 (2001). [CrossRef]  

18. P. Kok, C. P. Williams, and J. P. Dowling, “Construction of a quantum repeater with linear optics,” Phys. Rev. A 68(2), 022301 (2003). [CrossRef]  

19. B. Zhao, Z. B. Chen, Y. A. Chen, J. Schmiedmayer, and J. W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98(24), 240502 (2007). [CrossRef]  

20. Z. B. Chen, B. Zhao, Y. A. Chen, J. Schmiedmayer, and J. W. Pan, “Fault-tolerant quantum repeater with atomic ensembles and linear optics,” Phys. Rev. A 76(2), 022329 (2007). [CrossRef]  

21. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007). [CrossRef]  

22. L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79(3), 032325 (2009). [CrossRef]  

23. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011). [CrossRef]  

24. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85(6), 062311 (2012). [CrossRef]  

25. K. Azuma, K. Tamaki, and H. K. Lo, “All-photonic quantum repeaters,” Nat. Commun. 6(1), 6787 (2015). [CrossRef]  

26. T. Li, G. J. Yang, and F. G. Deng, “Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities,” Phys. Rev. A 93(1), 012302 (2016). [CrossRef]  

27. S. Muralidharan, L. S. Li, J. S. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Optimal architectures for long distance quantum communication,” Sci. Rep. 6(1), 20463 (2016). [CrossRef]  

28. J. Wallnofer, M. Zwerger, C. Muschik, N. Sangouard, and W. Dur, “Two-dimensional quantum repeaters,” Phys. Rev. A 94(5), 052307 (2016). [CrossRef]  

29. S. Vinay and P. Kok, “Practical repeaters for ultralong-distance quantum communication,” Phys. Rev. A 95(5), 052336 (2017). [CrossRef]  

30. S. Muralidharan, C. L. Zou, L. S. Li, and L. Jiang, “One-way quantum repeaters with quantum reed-solomon codes,” Phys. Rev. A 97(5), 052316 (2018). [CrossRef]  

31. M. Bergmann and P. V. Loock, “Hybrid quantum repeater for qudits,” Phys. Rev. A 99(3), 032349 (2019). [CrossRef]  

32. Y. F. Wu, J. L. Liu, and C. Simon, “Near-term performance of quantum repeaters with imperfect ensemble-based quantum memories,” Phys. Rev. A 101(4), 042301 (2020). [CrossRef]  

33. J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, Z. Liang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai, G.-B. Li, Q.-M. Lu, Y.-H. Gong, X. Yu, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li, J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang, N. Wang, X. Chang, Z.-C. Zhu, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017). [CrossRef]  

34. F. Steinlechne, S. Ecker, M. Fink, B. Liu, J. Bavaresco, M. Huber, T. Scheidl, and R. Ursin, “Distribution of high-dimensional entanglement via an intra-city free-space link,” Nat. Commun. 8(1), 15791 (2017). [CrossRef]  

35. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76(5), 722–725 (1996). [CrossRef]  

36. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54(5), 3824–3851 (1996). [CrossRef]  

37. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77(13), 2818–2821 (1996). [CrossRef]  

38. J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature (London) 410(6832), 1067–1070 (2001). [CrossRef]  

39. C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89(25), 257901 (2002). [CrossRef]  

40. J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423(6938), 417–422 (2003). [CrossRef]  

41. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-kerr nonlinearity,” Phys. Rev. A 77(4), 042308 (2008). [CrossRef]  

42. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81(3), 032307 (2010). [CrossRef]  

43. Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82(4), 044305 (2010). [CrossRef]  

44. C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84(3), 032307 (2011). [CrossRef]  

45. Y. B. Sheng, L. Zhou, and G. L. Long, “Hybrid entanglement purification for quantum repeaters,” Phys. Rev. A 88(2), 022302 (2013). [CrossRef]  

46. B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90(5), 052309 (2014). [CrossRef]  

47. M. Zwerger, H. J. Briegel, and W. Dür, “Robustness of hashing protocols for entanglement purification,” Phys. Rev. A 90(1), 012314 (2014). [CrossRef]  

48. C. Cai, L. Zhou, and Y. B. Sheng, “Fast multi-copy entanglement purification with linear optics,” Chin. Phys. B 24(12), 120306 (2015). [CrossRef]  

49. G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, “Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems,” Phys. Rev. Appl. 10(5), 054058 (2018). [CrossRef]  

50. L. Zhou and Y. B. Sheng, “Purification of logic-qubit entanglement,” Sci. Rep. 6(1), 28813 (2016). [CrossRef]  

51. L. K. Chen, H. L. Yong, P. Xu, X. C. Yao, T. Xiang, Z. D. Li, C. Liu, H. Lu, N. L. Liu, L. Li, T. Yang, C. Z. Peng, B. Zhao, Y. A. Chen, and J. W. Pan, “Experimental nested purification for a linear optical quantum repeater,” Nat. Photonics 11(11), 695–699 (2017). [CrossRef]  

52. L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Geenberger-Horne-Zeilinger state,” Ann. Phys. 385, 10–35 (2017). [CrossRef]  

53. H. Zhang, Q. Liu, X. S. Xu, J. Xiong, A. Alsaedi, T. Hayat, and F. G. Deng, “Polarization entanglement purification of nonlocal microwave photons based on the cross-kerr effect in circuit QED,” Phys. Rev. A 96(5), 052330 (2017). [CrossRef]  

54. J. Miguel-Ramiro and W. Dür, “Efficient entanglement purification protocols for d-level systems,” Phys. Rev. A 98(4), 042309 (2018). [CrossRef]  

55. S. Krastanov, V. V. Albert, and L. Jiang, “Optimized entanglement purification,” Quantum 3, 123123 (2019). [CrossRef]  

56. L. Zhou and Y. B. Sheng, “Purification of the residual entanglement,” Opt. Express 28(2), 2291–2301 (2020). [CrossRef]  

57. L. Zhou, S. S. Zhang, W. Zhong, and Y. B. Sheng, “Multi-copy nested entanglement purification for quantum repeaters,” Ann. Phys. 412, 168042 (2020). [CrossRef]  

58. G. Y. Wang and G. L. Long, “Entanglement purification for memory nodes in a quantum network,” Sci. China-Phys. Mech. Astron. 63(2), 220311 (2020). [CrossRef]  

59. P. S. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, “Feasible time-bin entanglement purification based on sum-frequency generation,” Opt. Express 29(2), 571–583 (2021). [CrossRef]  

60. X. M. Hu, C. X. Huang, Y. B. Sheng, L. Zhou, B. H. Liu, Y. Guo, C. Zhang, W. B. Xing, Y. F. Huang, C. F. Li, and G. C. Guo, “Long-distance entanglement purification for quantum communication,” Phys. Rev. Lett. 126(1), 010503 (2021). [CrossRef]  

61. S. Ecker, P. Sohr, L. Bulla, M. Huber, M. Bohmann, and R. Ursin, “Experimental single-copy entanglement distillation,” arxiv:2101.11503v1.

62. L. Zhou, P. S. Yan, W. Zhong, and Y. B. Sheng, “High efficient multipartite entanglement purification using hyperentanglement,” arxiv:2101.08920v1.

63. L. Zhou and Y. B. Sheng, “High-efficient two-step entanglement purification using hyperentanglement,” arxiv:2101.09006v2.

64. P. Xu, H. L. Yong, L. K. Chen, C. Liu, T. Xiang, X. C. Yao, H. Lu, Z. D. Li, N. L. Liu, L. Li, T. Yang, C. Z. Peng, B. Zhao, Y. A. Chen, and J. W. Pan, “Two-hierarchy entanglement swapping for a linear optical quantum repeater,” Phys. Rev. Lett. 119(17), 170502 (2017). [CrossRef]  

65. D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett. 119(22), 223602 (2017). [CrossRef]  

66. W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7(1), 13514 (2016). [CrossRef]  

67. D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, B. S. Shi, and G. C. Guo, “Raman quantum memory of photonic polarized entanglement,” Nat. Photonics 9(5), 332–338 (2015). [CrossRef]  

68. Y. Yu, F. Ma, X. Y. Luo, B. Jing, P. F. Sun, R. Z. Fang, C. W. Yang, H. Liu, M. Y. Zheng, X. P. Xie, W. J. Zhang, L. X. You, Z. Wang, T. Y. Chen, Q. Zhang, X. H. Bao, and J. W. Pan, “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature 578(7794), 240–245 (2020). [CrossRef]  

69. M. Zwerger, W. Dür, and H. J. Briegel, “Measurement-based quantum repeaters,” Phys. Rev. A 85(6), 062326 (2012). [CrossRef]  

70. M. Zwerger, H. J. Briegel, and W. Dür, “Measurement-based quantum communication,” Appl. Phys. B 122(3), 50 (2016). [CrossRef]  

71. L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59(1), 116–125 (1999). [CrossRef]  

72. N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59(5), 3295–3300 (1999). [CrossRef]  

73. M. Zwerger, H. J. Briegel, and W. Dür, “Universal and optimal error thresholds for measurement-based entanglement purification,” Phys. Rev. Lett. 110(26), 260503 (2013). [CrossRef]  

74. J. Wallnöfer and W. Dür, “Measurement-based quantum communication with resource states generated by entanglement purification,” Phys. Rev. A 95(1), 012303 (2017). [CrossRef]  

75. A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Zukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78(16), 3031–3034 (1997). [CrossRef]  

76. Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82(3), 032318 (2010). [CrossRef]  

77. C. P. Shen, Y. Gao, S. L. Su, Y. Mao, E. Liang, and S. Chen, “Mutual conversions between Knill-Laflamme-Milburn and W states,” Ann. Phys. 530(11), 1800114 (2018). [CrossRef]  

78. C. P. Shen, X. M. Xiu, L. Dong, X. Y. Zhu, L. Chen, E. Liang, L. L. Yan, and S. L. Su, “Conversion of Knill-Laflamme-Milburn entanglement to Greenberger-Horne-Zeilinger entanglement,” Ann. Phys. 531(12), 1900160 (2019). [CrossRef]  

79. X. Q. Shao, J. H. Wu, X. X. Yi, and G. L. Long, “Dissipative preparation of steady Greenberger-Horne-Zeilinger states for Rydberg atoms with quantum Zeno dynamics,” Phys. Rev. A 96(6), 062315 (2017). [CrossRef]  

80. R. H. Zheng, Y. H. Kang, S. L. Su, J. Song, and Y. Xia, “Robust and high-fidelity nondestructive Rydberg parity meter,” Phys. Rev. A 102(1), 012609 (2020). [CrossRef]  

81. S. L. Su, F. Q. Guo, L. Tian, X. Y. Zhu, L. L. Yan, E. J. Liang, and M. Feng, “Nondestructive Rydberg parity meter and its applications,” Phys. Rev. A 101(1), 012347 (2020). [CrossRef]  

82. F. Q. Guo, J. L. Wu, X. Y. Zhu, Z. Jin, Y. Zeng, S. Zhang, L. L. Yan, M. Feng, and S. L. Su, “Complete and nondestructive distinguishment of many-body Rydberg entanglement via robust geometric quantum operations,” Phys. Rev. A 102(6), 062410 (2020). [CrossRef]  

83. Y. H. Kang, Z. C. Shi, J. Song, and Y. Xia, “Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade,” Phys. Rev. A 102(2), 022617 (2020). [CrossRef]  

84. H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. J. Zhang, H. Li, L. Zhang, Z. Wang, L. X. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, “12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Phys. Rev. Lett. 121(25), 250505 (2018). [CrossRef]  

85. L. Li, Z. X. Liu, X. F. Ren, S. M. Wang, V. C. Su, M. K. Chen, C. H. Chu, H. Y. Kou, B. H. Liu, W. B. Zang, G. C. Guo, L. J. Zhang, Z. L. Wang, S. N. Zhu, and D. P. Tsai, “Metalens-array-based high-dimensional and multiphoton quantum source,” Science 368(6498), 1487–1490 (2020). [CrossRef]  

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. The schematic diagram of MB-EPP in linear optics for two noisy copies. It needs two resource states R$_1$ and R$_2$. The photons in modes $a_1$ and $g_1$, $a_2$ and $g_2$, $b_1$ and $h_1$, $b_2$ and $h_2$ are directed to four 50:50 beam-splitters (BSs) to couple with resource states via BSMs, respectively. The polarizing beam-splitters (PBSs) totally transmit the photon in $|H\rangle$ and reflect the photon in $|V\rangle$. A successful BSM corresponds to a projection onto $|\psi ^\textrm{+}\rangle$ or $|\psi ^\textrm{-}\rangle$ [71,72]. We take the BSM1 for an example. If the detectors ${D_1}{D_{{1^\prime }}}$ or ${D_2}{D_{{2^\prime }}}$ each register one photon, it indicates a projection onto $|\psi ^+\rangle$. If the detectors ${D_1}{D_{{2^\prime }}}$ or ${D_2}{D_{{1^\prime }}}$ each register one photon, it corresponds to a projection onto $|\psi ^-\rangle$.
Fig. 2.
Fig. 2. The schematic diagram of MB-EPP protocol for multiple noisy copies [73]. Two pairs of $N+1$-photon resource states are required. The boxes represent the standard BSMs [71,72] depicted as Fig. 1.
Fig. 3.
Fig. 3. The fidelity $F_{N}$ altered with the initial fidelity $F$, where we control $N=2, 3, 4, 5$.
Fig. 4.
Fig. 4. The schematic diagram of MB-EPP in linear optics. It has three parts which are entanglement generation, preparation of resource states and BSM. The UV laser passes through two BBO crystals to generate two entangled states $|\Phi ^+\rangle _{a_{1}b_{1}}$ and $|\Phi ^+\rangle _{a_{2}b_{2}}$. The photons in modes $a_1$, $b_1$, $a_2$ and $b_2$ are directed to four 50:50 beam splitters (BSs) to couple with resource states via BSMs, respectively. The polarizing beam splitters (PBSs) totally transmit the photon in $|H\rangle$ and reflect the photon in $|V\rangle$. A successful BSM corresponds to a projection into $|\psi ^\textrm{+}\rangle$ ($|\psi ^\textrm{-}\rangle$), providing a click on ${D_{H3}}{D_{V3}}$ (${D_{H3}}{D_{V4}}$) or ${D_{H4}}{D_{V4}}$ (${D_{H4}}{D_{V3}}$). The preparation of resource states can be described as follows. The UV laser passes through BBO$_{3}$, BBO$_{4}$, BBO$_{5}$, and BBO$_{6}$ to generate four entangled states $|\Phi ^+\rangle _{g_{1}g_{2}}$, $|\Phi ^+\rangle _{g_{3}g_{4}}$, $|\Phi ^+\rangle _{h_{1}h_{2}}$, and $|\Phi ^+\rangle _{h_{3}h_{4}}$. The photons in modes $g_{2}g_{3}$ and $h_{2}h_{3}$ are directed to two BSs, respectively. When a click on $D_3$ and $D_1$, the remaining particles can be utilized to help us to operate MB-EPP.

Equations (59)

Equations on this page are rendered with MathJax. Learn more.

| ϕ ± a b = 1 2 ( | H H a b ± | V V a b ) , | ψ ± a b = 1 2 ( | H V a b ± | V H a b ) .
ρ a b  =  F | ϕ + a b ϕ + | + ( 1 F ) | ψ + a b ψ + | .
| GHZ = 1 2 ( | H H H + | V V V ) .
| ϕ + a 1 b 1 | ϕ + a 2 b 2 | GHZ g 1 g 2 g 3 | GHZ h 1 h 2 h 3 = 1 4 | H H g 3 h 3 ( | H H g 1 a 1 | H H g 2 a 2 | H H h 1 b 1 | H H h 2 b 2 + | H H g 1 a 1 | H V g 2 a 2 | H H h 1 b 1 | H V h 2 b 2 + | H V g 1 a 1 | H H g 2 a 2 | H V h 1 b 1 | H H h 2 b 2 + | H V g 1 a 1 | H V g 2 a 2 | H V h 1 b 1 | H V h 2 b 2 ) + 1 4 | H V g 3 h 3 ( | H H g 1 a 1 | H H g 2 a 2 | V H h 1 b 1 | V H h 2 b 2 + | H H g 1 a 1 | H V g 2 a 2 | V H h 1 b 1 | V V h 2 b 2 + | H V g 1 a 1 | H H g 2 a 2 | V V h 1 b 1 | V H h 2 b 2 + | H V g 1 a 1 | H V g 2 a 2 | V V h 1 b 1 | V V h 2 b 2 ) + 1 4 | V H g 3 h 3 ( | V H g 1 a 1 | V H g 2 a 2 | H H h 1 b 1 | H H h 2 b 2 + | V H g 1 a 1 | V V g 2 a 2 | H H h 1 b 1 | H V h 2 b 2 + | V V g 1 a 1 | V H g 2 a 2 | H V h 1 b 1 | H H h 2 b 2 + | V V g 1 a 1 | V V g 2 a 2 | H V h 1 b 1 | H V h 2 b 2 ) + 1 4 | V V g 3 h 3 ( | V H g 1 a 1 | V H g 2 a 2 | V H h 1 b 1 | V H h 2 b 2 + | V H g 1 a 1 | V V g 2 a 2 | V H h 1 b 1 | V V h 2 b 2 + | V V g 1 a 1 | V H g 2 a 2 | V V h 1 b 1 | V H h 2 b 2 + | V V g 1 a 1 | V V g 2 a 2 | V V h 1 b 1 | V V h 2 b 2 ) .
| ϕ + g 3 h 3 = 1 2 ( | H H g 3 h 3 + | V V g 3 h 3 ) .
| ψ + g 3 h 3 = 1 2 ( | H V g 3 h 3 + | V H g 3 h 3 ) .
ρ g 3 h 3 = F 2 | ϕ + g 3 h 3 ϕ + | + ( 1 F 2 ) | ψ + g 3 h 3 ψ + | ,
F 2 = F 2 F 2 + ( 1 F ) 2 .
| GHZ = 1 2 ( | H H H H + | V V V V ) .
| ϕ + g 4 h 4 = 1 2 ( | H H g 4 h 4 + | V V g 4 h 4 ) .
| ψ + g 4 h 4 = 1 2 ( | H V g 4 h 4 + | V H g 4 h 4 ) .
ρ g 4 h 4 = F 3 | ϕ + g 4 h 4 ϕ + | + ( 1 F 3 ) | ψ + g 4 h 4 ψ + | ,
F 3 = F 3 F 3 + ( 1 F ) 3 .
ρ g N + 1 h N + 1 = F N | ϕ + g N + 1 h N + 1 ϕ + | + ( 1 F N ) | ψ + g N + 1 h N + 1 ψ + | ,
F N = F N F N + ( 1 F ) N .
| Φ + a 1 b 1 = | v a c + p | ϕ + a 1 b 1 + p 2 ( | ϕ + a 1 b 1 ) 2 .
| Ψ + a 1 b 1 = | v a c + p | ψ + a 1 b 1 + p 2 ( | ψ + a 1 b 1 ) 2 .
ρ 1 = F | Φ + a 1 b 1 Φ + | + ( 1 F ) | Ψ + a 1 b 1 Ψ + | .
1 2 ( | H H + | V V ) ( | h 1 h 2 + | h 3 h 4 ) = 1 2 ( | H h 1 | H h 2 + | H h 3 | H h 4 + | V h 1 | V h 2 + | V h 3 | V h 4 ) .
1 2 ( | H H + | V V ) ( | h 1 h 2 + | h 3 h 4 ) 1 2 2 ( | V h 1 + | V h 4 ) .
| ϕ + h 1 h 2 | ϕ + h 3 h 4 = 1 2 ( | H h 1 | H h 2 | H h 3 | H h 4 + | H h 1 | H h 2 | V h 3 | V h 4 + | V h 1 | V h 2 | H h 3 | H h 4 + | V h 1 | V h 2 | V h 3 | V h 4 ) .
| ϕ + h 1 h 2 | ϕ + h 3 h 4 1 2 2 ( | H h 1 | V h 4 | H h 5 + | V h 1 | H h 4 | V h 5 ) + 1 4 | V h 1 | V h 4 .
| ϕ + h 1 h 2 2 1 2 | H h 1 | V h 1 | H h 5 + 1 4 | V h 1 | V h 1 ,
| ϕ + h 3 h 4 2 1 2 | H h 4 | V h 4 | V h 5 + 1 4 | V h 4 | V h 4 .
| Res 1 = | α 1 + | β 1 + | δ 1 + | γ 1 ,
| α 1 = p 2 2 | V h 1 + p 2 2 | H h 4 , | β 1 = p 4 | V h 1 | H h 4 + p 8 | V h 1 | V h 1 + p 8 | H h 4 | H h 4 , | δ 1 = p 2 2 | H h 5 | H h 1 | V h 1 + p 2 2 | V h 5 | H h 4 | V h 4 , | γ 1 = p 2 | GHZ h 1 h 4 h 5 .
| Res 2 = | α 2 + | β 2 + | δ 2 + | γ 2 ,
| α 2 = p 2 2 | V g 1 + p 2 2 | H g 4 , | β 2 = p 4 | V g 1 | H g 4 + p 8 | V g 1 | V g 1 + p 8 | H g 4 | H g 4 , | δ 2 = p 2 2 | H g 5 | H g 1 | V g 1 + p 2 2 | V g 5 | H g 4 | V g 4 , | γ 2 = p 2 | GHZ g 1 g 4 g 5 .
ρ i n = ρ 1 ρ 2 ρ Res1 ρ Res2 = [ | v a c v a c | + A ( Δ 1 + Δ 2 ) + C ( Ω 1 + Ω 2 ) + A 2 Δ 1 Δ 2 + C 2 Ω 1 Ω 2 + B Ω 1 Δ 2 + B Δ 1 Ω 2 + D ( Δ 1 2 + Δ 2 2 ) + E ( Ω 1 2 + Ω 2 2 ) ] ρ Res1 ρ Res2 ,
| Γ 1 = | ϕ + a 1 b 1 | ϕ + a 2 b 2 | Res 1 | Res 2 = | ϕ + a 1 b 1 | ϕ + a 2 b 2 | α 1 ( | α 2 + | β 2 + | δ 2 + | γ 2 ) + | ϕ + a 1 b 1 | ϕ + a 2 b 2 | β 1 ( | α 2 + | β 2 + | δ 2 + | γ 2 ) + | ϕ + a 1 b 1 | ϕ + a 2 b 2 | δ 1 ( | α 2 + | β 2 + | δ 2 + | γ 2 ) + | ϕ + a 1 b 1 | ϕ + a 2 b 2 | γ 1 ( | α 2 + | β 2 + | δ 2 + | γ 2 ) .
| ϕ + a 1 b 1 | ϕ + a 2 b 2 | α 1 | Res 2 = p 4 2 ( | H H H H + | H V H V + | V H V H + | V V V V ) a 1 a 2 b 1 b 2 | V h 1 | Res 2 + p 4 2 ( | H H H H + | H V H V + | V H V H + | V V V V ) a 1 a 2 b 1 b 2 | H h 4 | Res 2 .
| ϕ + a 1 b 1 | ϕ + a 2 b 2 | β 1 | Res 2 = p 8 ( | H H H H + | H V H V + | V H V H + | V V V V ) a 1 a 2 b 1 b 2 | V H h 1 h 4 | Res 2 + p 16 ( | H H H H + | H V H V + | V H V H + | V V V V ) a 1 a 2 b 1 b 2 | V h 1 2 | Res 2 + p 16 ( | H H H H + | H V H V + | V H V H + | V V V V ) a 1 a 2 b 1 b 2 | H h 4 2 | Res 2 ,
| ϕ + a 1 b 1 | ϕ + a 2 b 2 | δ 1 | Res 2 = p 4 2 ( | H H H H + | H V H V + | V H V H + | V V V V ) a 1 a 2 b 1 b 2 | H H V h 5 h 1 h 1 | Res 2 + p 4 2 ( | H H H H + | H V H V + | V H V H + | V V V V ) a 1 a 2 b 1 b 2 | V H V h 5 h 4 h 4 | Res 2 .
| ϕ + a 1 b 1 | ϕ + a 2 b 2 | γ 1 | Res 2 = p 4 ( | H H H H + | H V H V + | V H V H + | V V V V ) a 1 a 2 b 1 b 2 | GHZ h 1 h 4 h 5 ( | α 2 + | β 2 + | δ 2 ) + p 2 8 ( | H H H H + | H V H V + | V H V H + | V V V V ) a 1 a 2 b 1 b 2 | GHZ h 1 h 4 h 5 | GHZ g 1 g 4 g 5 .
| ϕ + g 5 h 5 = 1 2 ( | H H g 5 h 5 + | V V g 5 h 5 ) .
| ψ + g 5 h 5 = 1 2 ( | H V g 5 h 5 + | V H g 5 h 5 ) .
| Γ 2 = | ϕ + a 1 b 1 2 | Res 1 | Res 2 = | ϕ + a 1 b 1 2 | α 1 ( | α 2 + | β 2 + | δ 2 + | γ 2 ) + | ϕ + a 1 b 1 2 | β 1 ( | α 2 + | β 2 + | δ 2 + | γ 2 ) + | ϕ + a 1 b 1 2 | δ 1 ( | α 2 + | β 2 + | δ 2 + | γ 2 ) + | ϕ + a 1 b 1 2 | γ 1 ( | α 2 + | β 2 + | δ 2 + | γ 2 ) .
ρ g 5 h 5 = F 2 | ϕ + g 5 h 5 ϕ + | + ( 1 F 2 ) | ψ + g 5 h 5 ψ + | ,
ρ o = A | ϕ + ϕ + | + B | ϕ ϕ | + C | ψ + ψ + | + D | ψ ψ | ,
ρ n = A 2 + B 2 ( A + B ) 2 + ( C + D ) 2 | ϕ + ϕ + | + 2 A B ( A + B ) 2 + ( C + D ) 2 | ϕ ϕ | + C 2 + D 2 ( A + B ) 2 + ( C + D ) 2 | ψ + ψ + | + 2 C D ( A + B ) 2 + ( C + D ) 2 | ψ ψ | .
| ϕ + a 1 b 1 | ϕ + a 2 b 2 | GHZ g 1 g 2 g 3 | GHZ h 1 h 2 h 3 = 1 16 | H H g 3 h 3 [ ( | ϕ + + | ϕ ) g 1 a 1 ( | ϕ + + | ϕ ) g 2 a 2 ( | ϕ + + | ϕ ) h 1 b 1 ( | ϕ + + | ϕ ) h 2 b 2 + ( | ϕ + + | ϕ ) g 1 a 1 ( | ψ + + | ψ ) g 2 a 2 ( | ϕ + + | ϕ ) h 1 b 1 ( | ψ + + | ψ ) h 2 b 2 + ( | ψ + + | ψ ) g 1 a 1 ( | ϕ + + | ϕ ) g 2 a 2 ( | ψ + + | ψ ) h 1 b 1 ( | ϕ + + | ϕ ) h 2 b 2 + ( | ψ + + | ψ ) g 1 a 1 ( | ψ + + | ψ ) g 2 a 2 ( | ψ + + | ψ ) h 1 b 1 ( | ψ + + | ψ ) h 2 b 2 ] + 1 16 | H V g 3 h 3 [ ( | ϕ + + | ϕ ) g 1 a 1 ( | ϕ + + | ϕ ) g 2 a 2 ( | ψ + | ψ ) h 1 b 1 ( | ψ + | ψ ) h 2 b 2 + ( | ϕ + + | ϕ ) g 1 a 1 ( | ψ + + | ψ ) g 2 a 2 ( | ψ + | ψ ) h 1 b 1 ( | ϕ + | ϕ ) h 2 b 2 + ( | ψ + + | ψ ) g 1 a 1 ( | ϕ + + | ϕ ) g 2 a 2 ( | ϕ + | ϕ ) h 1 b 1 ( | ψ + | ψ ) h 2 b 2 + ( | ψ + + | ψ ) g 1 a 1 ( | ψ + + | ψ ) g 2 a 2 ( | ϕ + | ϕ ) h 1 b 1 ( | ϕ + | ϕ ) h 2 b 2 ] + 1 16 | V H g 3 h 3 [ ( | ψ + | ψ ) g 1 a 1 ( | ψ + | ψ ) g 2 a 2 ( | ϕ + + | ϕ ) h 1 b 1 ( | ϕ + + | ϕ ) h 2 b 2 + ( | ψ + | ψ ) g 1 a 1 ( | ϕ + | ϕ ) g 2 a 2 ( | ϕ + + | ϕ ) h 1 b 1 ( | ψ + + | ψ ) h 2 b 2 + ( | ϕ + | ϕ ) g 1 a 1 ( | ψ + | ψ ) g 2 a 2 ( | ψ + + | ψ ) h 1 b 1 ( | ϕ + + | ϕ ) h 2 b 2 + ( | ϕ + | ϕ ) g 1 a 1 ( | ϕ + | ϕ ) g 2 a 2 ( | ψ + + | ψ ) h 1 b 1 ( | ψ + + | ψ ) h 2 b 2 ] + 1 16 | V V g 3 h 3 [ ( | ψ + | ψ ) g 1 a 1 ( | ψ + | ψ ) g 2 a 2 ( | ψ + | ψ ) h 1 b 1 ( | ψ + | ψ ) h 2 b 2 + ( | ψ + | ψ ) g 1 a 1 ( | ϕ + | ϕ ) g 2 a 2 ( | ψ + | ψ ) h 1 b 1 ( | ϕ + | ϕ ) h 2 b 2 + ( | ϕ + | ϕ ) g 1 a 1 ( | ψ + | ψ ) g 2 a 2 ( | ϕ + | ϕ ) h 1 b 1 ( | ψ + | ψ ) h 2 b 2 + ( | ϕ + | ϕ ) g 1 a 1 ( | ϕ + | ϕ ) g 2 a 2 ( | ϕ + | ϕ ) h 1 b 1 ( | ϕ + | ϕ ) h 2 b 2 ] .
( | H H + | V V ) g 3 h 3 ( | ψ + | ψ + | ψ + | ψ + + | ψ + | ψ + | ψ | ψ + | ψ + | ψ | ψ + | ψ + | ψ + | ψ | ψ | ψ + + | ψ | ψ + | ψ + | ψ + | ψ | ψ + | ψ | ψ + + | ψ | ψ | ψ + | ψ + + | ψ | ψ | ψ | ψ + ( | H H | V V ) g 3 h 3 ( | ψ + | ψ + | ψ + | ψ + | ψ + | ψ + | ψ | ψ + ) + | ψ + | ψ | ψ + | ψ + + | ψ + | ψ | ψ | ψ + | ψ | ψ + | ψ + | ψ + + | ψ | ψ + | ψ | ψ + | ψ | ψ | ψ + | ψ + | ψ | ψ | ψ | ψ + ) .
| ϕ + g 3 h 3 = 1 2 ( | H H g 3 h 3 + | V V g 3 h 3 ) .
| ϕ g 3 h 3 = 1 2 ( | H H g 3 h 3 | V V g 3 h 3 ) ,
| ψ + g 3 h 3 = 1 2 ( | H V g 3 h 3 + | V H g 3 h 3 ) ,
| ψ g 3 h 3 = 1 2 ( | H V g 3 h 3 | V H g 3 h 3 ) .
| ϕ + a 1 b 1 | ψ + a 2 b 2 | GHZ g 1 g 2 g 3 | GHZ h 1 h 2 h 3 = 1 16 | H H g 3 h 3 [ ( | ϕ + + | ϕ ) g 1 a 1 ( | ϕ + + | ϕ ) g 2 a 2 ( | ϕ + + | ϕ ) h 1 b 1 ( | ψ + + | ψ ) h 2 b 2 + ( | ϕ + + | ϕ ) g 1 a 1 ( | ψ + + | ψ ) g 2 a 2 ( | ϕ + + | ϕ ) h 1 b 1 ( | ϕ + + | ϕ ) h 2 b 2 + ( | ψ + + | ψ ) g 1 a 1 ( | ϕ + + | ϕ ) g 2 a 2 ( | ψ + + | ψ ) h 1 b 1 ( | ψ + + | ψ ) h 2 b 2 + ( | ψ + + | ψ ) g 1 a 1 ( | ψ + + | ψ ) g 2 a 2 ( | ψ + + | ψ ) h 1 b 1 ( | ϕ + + | ϕ ) h 2 b 2 ] + 1 16 | H V g 3 h 3 [ ( | ϕ + + | ϕ ) g 1 a 1 ( | ϕ + + | ϕ ) g 2 a 2 ( | ψ + | ψ ) h 1 b 1 ( | ϕ + | ϕ ) h 2 b 2 + ( | ϕ + + | ϕ ) g 1 a 1 ( | ψ + + | ψ ) g 2 a 2 ( | ψ + | ψ ) h 1 b 1 ( | ψ + | ψ ) h 2 b 2 + ( | ψ + + | ψ ) g 1 a 1 ( | ϕ + + | ϕ ) g 2 a 2 ( | ϕ + | ϕ ) h 1 b 1 ( | ϕ + | ϕ ) h 2 b 2 + ( | ψ + + | ψ ) g 1 a 1 ( | ψ + + | ψ ) g 2 a 2 ( | ϕ + | ϕ ) h 1 b 1 ( | ψ + | ψ ) h 2 b 2 ] + 1 16 | V H g 3 h 3 [ ( | ψ + | ψ ) g 1 a 1 ( | ψ + | ψ ) g 2 a 2 ( | ϕ + + | ϕ ) h 1 b 1 ( | ψ + + | ψ ) h 2 b 2 + ( | ψ + | ψ ) g 1 a 1 ( | ϕ + | ϕ ) g 2 a 2 ( | ϕ + + | ϕ ) h 1 b 1 ( | ϕ + + | ϕ ) h 2 b 2 + ( | ϕ + | ϕ ) g 1 a 1 ( | ψ + | ψ ) g 2 a 2 ( | ψ + + | ψ ) h 1 b 1 ( | ψ + + | ψ ) h 2 b 2 + ( | ϕ + | ϕ ) g 1 a 1 ( | ϕ + | ϕ ) g 2 a 2 ( | ψ + + | ψ ) h 1 b 1 ( | ϕ + + | ϕ ) h 2 b 2 ] + 1 16 | V V g 3 h 3 [ ( | ψ + | ψ ) g 1 a 1 ( | ψ + | ψ ) g 2 a 2 ( | ψ + | ψ ) h 1 b 1 ( | ϕ + | ϕ ) h 2 b 2 + ( | ψ + | ψ ) g 1 a 1 ( | ϕ + | ϕ ) g 2 a 2 ( | ψ + | ψ ) h 1 b 1 ( | ψ + | ψ ) h 2 b 2 + ( | ϕ + | ϕ ) g 1 a 1 ( | ψ + | ψ ) g 2 a 2 ( | ϕ + | ϕ ) h 1 b 1 ( | ϕ + | ϕ ) h 2 b 2 + ( | ϕ + | ϕ ) g 1 a 1 ( | ϕ + | ϕ ) g 2 a 2 ( | ϕ + | ϕ ) h 1 b 1 ( | ψ + | ψ ) h 2 b 2 ] .
| ϕ + a 1 b 1 | ϕ + a 2 b 2 | ϕ + a 3 b 3 | GHZ g 1 g 2 g 3 g 4 | GHZ h 1 h 2 h 3 h 4 = ( | H H + | V V ) a 1 b 1 ( | H H + | V V ) a 2 b 2 ( | H H + | V V ) a 3 b 3 ( | H H H H + | V V V V ) g 1 g 2 g 3 g 4 ( | H H H H + | V V V V ) h 1 h 2 h 3 h 4 .
| H H g 4 h 4 | H V g 1 a 1 | H V g 2 a 2 | H V g 3 a 3 | H V h 1 b 1 | H V h 2 b 2 | H V h 3 b 3 + | V V g 4 h 4 | V H g 1 a 1 | V H g 2 a 2 | V H g 3 a 3 | V H h 1 b 1 | V H h 2 b 2 | V H h 3 b 3 .
( | H H + | V V ) g 3 h 3 ( | ψ + | ψ + | ψ + | ψ + | ψ + | ψ + + | ψ + | ψ + | ψ + | ψ + | ψ | ψ + | ψ + | ψ + | ψ + | ψ | ψ + | ψ + | ψ + | ψ + | ψ + | ψ | ψ | ψ + + | ψ + | ψ + | ψ | ψ + | ψ + | ψ + | ψ + | ψ + | ψ | ψ + | ψ | ψ + + | ψ + | ψ + | ψ | ψ | ψ + | ψ + + | ψ + | ψ + | ψ | ψ | ψ | ψ + | ψ + | ψ | ψ + | ψ + | ψ + | ψ + | ψ + | ψ | ψ + | ψ + | ψ | ψ + + | ψ + | ψ | ψ + | ψ | ψ + | ψ + + | ψ + | ψ | ψ + | ψ | ψ | ψ + | ψ + | ψ | ψ | ψ + | ψ + | ψ + + | ψ + | ψ | ψ | ψ + | ψ | ψ + | ψ + | ψ | ψ | ψ + | ψ + | ψ + + | ψ + | ψ | ψ | ψ + | ψ | ψ + | ψ + | ψ | ψ | ψ | ψ + | ψ + | ψ + | ψ | ψ | ψ | ψ | ψ + + | ψ | ψ + | ψ + | ψ + | ψ + | ψ + | ψ | ψ + | ψ + | ψ + | ψ | ψ + + | ψ | ψ + | ψ + | ψ | ψ + | ψ + + | ψ | ψ + | ψ + | ψ | ψ | ψ + | ψ | ψ + | ψ | ψ + | ψ + | ψ + + | ψ | ψ + | ψ | ψ + | ψ | ψ + | ψ | ψ + | ψ | ψ | ψ + | ψ + | ψ | ψ + | ψ | ψ | ψ | ψ + + | ψ | ψ | ψ + | ψ + | ψ + | ψ + + | ψ | ψ | ψ + | ψ + | ψ | ψ + | ψ | ψ | ψ + | ψ | ψ + | ψ + | ψ | ψ | ψ + | ψ | ψ | ψ + + | ψ | ψ | ψ | ψ + | ψ + | ψ + | ψ | ψ | ψ | ψ + | ψ | ψ + + | ψ | ψ | ψ | ψ | ψ + | ψ + + | ψ | ψ | ψ | ψ | ψ | ψ ) + ( | H H | V V ) g 3 h 3 ( | ψ + | ψ + | ψ + | ψ + | ψ + | ψ + | ψ + | ψ + | ψ + | ψ + | ψ | ψ + + | ψ + | ψ + | ψ + | ψ | ψ + | ψ + + | ψ + | ψ + | ψ + | ψ | ψ | ψ + | ψ + | ψ + | ψ | ψ + | ψ + | ψ + + | ψ + | ψ + | ψ | ψ + | ψ | ψ + | ψ + | ψ + | ψ | ψ | ψ + | ψ + | ψ + | ψ + | ψ | ψ | ψ | ψ + + | ψ + | ψ | ψ + | ψ + | ψ + | ψ + + | ψ + | ψ | ψ + | ψ + | ψ | ψ + | ψ + | ψ | ψ + | ψ | ψ + | ψ + | ψ + | ψ | ψ + | ψ | ψ | ψ + + | ψ + | ψ | ψ | ψ + | ψ + | ψ + | ψ + | ψ | ψ | ψ + | ψ | ψ + + | ψ + | ψ | ψ | ψ + | ψ + | ψ + | ψ + | ψ | ψ | ψ + | ψ | ψ + + | ψ + | ψ | ψ | ψ | ψ + | ψ + + | ψ + | ψ | ψ | ψ | ψ | ψ + | ψ | ψ + | ψ + | ψ + | ψ + | ψ + + | ψ | ψ + | ψ + | ψ + | ψ | ψ + | ψ | ψ + | ψ + | ψ | ψ + | ψ + | ψ | ψ + | ψ + | ψ | ψ | ψ + + | ψ | ψ + | ψ | ψ + | ψ + | ψ + | ψ | ψ + | ψ | ψ + | ψ | ψ + + | ψ | ψ + | ψ | ψ | ψ + | ψ + + | ψ | ψ + | ψ | ψ | ψ | ψ + | ψ | ψ | ψ + | ψ + | ψ + | ψ + | ψ | ψ | ψ + | ψ + | ψ | ψ + + | ψ | ψ | ψ + | ψ | ψ + | ψ + + | ψ | ψ | ψ + | ψ | ψ | ψ + | ψ | ψ | ψ | ψ + | ψ + | ψ + + | ψ | ψ | ψ | ψ + | ψ | ψ + | ψ | ψ | ψ | ψ | ψ + | ψ + | ψ | ψ | ψ | ψ | ψ | ψ + ) .
| ϕ + g 4 h 4 = 1 2 ( | H H g 4 h 4 + | V V g 4 h 4 ) .
| ϕ g 4 h 4 = 1 2 ( | H H g 4 h 4 | V V g 4 h 4 ) ,
| ψ + a 1 b 1 | ψ + a 2 b 2 | ψ + a 3 b 3 | G H Z g 1 g 2 g 3 g 4 | G H Z h 1 h 2 h 3 h 4 = ( | H V + | V H ) a 1 b 1 ( | H V + | V H ) a 2 b 2 ( | H V + | V H ) a 3 b 3 ( | H H H H + | V V V V ) g 1 g 2 g 3 g 4 ( | H H H H + | V V V V ) h 1 h 2 h 3 h 4 .
| ψ + g 4 h 4 = 1 2 ( | H V g 4 h 4 + | V H g 4 h 4 ) ,
| ψ g 4 h 4 = 1 2 ( | H V g 4 h 4 | V H g 4 h 4 ) ,
ρ g 4 h 4 = F 3 F 3 + ( 1 F ) 3 | ϕ + g 4 h 4 ϕ + | + ( 1 F ) 3 F 3 + ( 1 F ) 3 | ψ + g 4 h 4 ψ + | .
ρ t = ρ a 1 b 1 ρ a 2 b 2 ρ a N 1 b N 1 ρ a N b N = m = 0 N F m ( 1 F ) N m P ( m ) ,
ρ g N + 1 h N + 1 = F N F N + ( 1 F ) N | ϕ + g N + 1 h N + 1 ϕ + | + ( 1 F ) N F N + ( 1 F ) N | ψ + g N + 1 h N + 1 ψ + | .
ρ g N + 1 h N + 1 p = F N F N + ( 1 F ) N | ϕ g N + 1 h N + 1 ϕ | + ( 1 F ) N F N + ( 1 F ) N | ψ g N + 1 h N + 1 ψ | .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.