Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultrabroadband vanadium-dioxide-based metamaterial absorber based on two resonance modes at a terahertz frequency

Not Accessible

Your library or personal account may give you access

Abstract

A terahertz (THz) ultrabroadband metamaterial absorber consisting of a periodically patterned vanadium dioxide (${{\rm VO}_2}$) array, loss-free dielectric layer, and a continuous gold film is designed. Its resonance features can be dynamically tuned by applying different temperatures to the ${{\rm VO}_2}$ to promote phase transformation. When the ${{\rm VO}_2}$ is in the metallic state, the designed metamaterial has an absorption bandwidth of 6.08 THz with an absorptivity more than 90%, from 3.84 THz to 9.92 THz. The broadband absorption is attributed to the combination of two absorption peaks localized at 4.73 THz and 9.05 THz that are based on the localized resonance mode and surface lattice resonance mode. Taking advantage of the temperature phase transition of  ${{\rm VO}_2}$, the designed absorber can be switched between ultrabroadband absorption and near-total reflection. Its maximum modulation depth can reach 99%, and it achieves an excellent modulation effect with a bandwidth of about 6 THz. The physical mechanism of the ultrabroadband absorption is discussed through an analysis of the near-field distribution and the current density distribution of the absorption peaks. The effect of structural parameters on the absorption are also investigated. The designed metamaterial absorber could have application potential in THz imaging, THz communications and smart devices.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Dynamically switchable multifunctional terahertz absorber based on graphene and vanadium dioxide hybrid metamaterials

Yujiao Wen, Yunping Qi, Li Wang, Zihao Zhou, Haowen Chen, Shiyu Zhao, and Xiangxian Wang
J. Opt. Soc. Am. B 40(3) 509-515 (2023)

Broadband tunable terahertz metamaterial absorber having near-perfect absorbance modulation capability based on a patterned vanadium dioxide circular patch

Qian Zhao, Xuefeng Qin, Chongyang Xu, Haiquan Zhou, and Ben-Xin Wang
Appl. Opt. 62(35) 9283-9290 (2023)

Design of an ultra-wideband switchable terahertz metamaterial absorber using a VO2 transversally open ring structure

Jing Li, Binyi Ma, Yanfei Liu, Honglei Guo, Qiannan Wu, and Mengwei Li
J. Opt. Soc. Am. B 40(10) 2489-2497 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.