Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Time-domain electromagnetic scattering by a sphere in uniform translational motion

Not Accessible

Your library or personal account may give you access

Abstract

Scattering by a uniformly translating sphere of a pulse that modulates the amplitude of a linearly polarized plane wave was formulated using the frame-hopping method involving a laboratory inertial reference frame and the sphere’s comoving inertial reference frame. The incident signal was defined in the laboratory frame and transformed to the comoving frame with the Lorentz transformation, thereby altering the incident signal’s spectrum, direction of propagation of the carrier plane wave, and the direction of the incident electric field, depending on the sphere’s velocity. In the comoving frame, the incident signal was Fourier-transformed to the frequency domain, and the scattered field phasors were computed in all directions using the constitutive parameters of the material of the sphere at rest. The scattered signal in the comoving frame was obtained using the inverse Fourier transform. Finally, the scattered signal in the laboratory frame was obtained by inverting the original Lorentz transformation. The backscattered signal was found to depend strongly on the sphere’s velocity, when the sphere’s speed is an appreciable fraction of the speed of light in free space. The change in the backscattered signal compared with the backscattered signal from a stationary sphere is the greatest when the sphere’s velocity is either parallel or antiparallel to the direction of propagation of the incident signal. The backscattered signal is also affected by motion transverse to the incident signal’s direction of propagation; then, the backscattered signal depends on whether or not the motion is aligned with the direction of the incident electric field.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Electromagnetic pulse scattering by a spacecraft nearing light speed

Timothy J. Garner, Akhlesh Lakhtakia, James K. Breakall, and Craig F. Bohren
Appl. Opt. 56(22) 6206-6213 (2017)

Scattering by a three-dimensional object composed of the simplest Lorentz-nonreciprocal medium

Hamad M. Alkhoori, Akhlesh Lakhtakia, James K. Breakall, and Craig F. Bohren
J. Opt. Soc. Am. A 35(12) 2026-2034 (2018)

Light scattering by magnetoelectrically gyrotropic sphere with unit relative permittivity and relative permeability

A. D. Ulfat Jafri and Akhlesh Lakhtakia
J. Opt. Soc. Am. A 31(11) 2489-2494 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved