Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry

Not Accessible

Your library or personal account may give you access

Abstract

Many authors, dating back to at least the 1950s, have presented mathematical expansions of the wave-front aberration function for optical systems without symmetry, typically based on limiting assumptions and simplifications, with some of the most recent work being done by Howard and Stone [Appl. Opt. 39, 3232 (2000) ]. This paper reveals that in fact there are no new aberrations in imaging optical systems with near-circular aperture stops but otherwise without symmetry. What does occur is that the field dependence of an aberration often changes when symmetry is abandoned. Each aberration type develops a characteristic field behavior in a system without symmetry. Specifically, for example, astigmatism, develops a binodal field dependence; e.g., there are typically two points in the field with zero astigmatism, and typically neither point is on axis. This construct, nodal aberration theory, for understanding the aberrations in systems without symmetry becomes a direct extension of an optical designer’s knowledge base. Through the use of real ray-based analysis methods, such as Zernike coefficients, it is possible to understand completely the aberrations of optical systems without symmetry in terms of rotationally symmetric aberration theory with the simple addition of the concept of field nodes.

© 2005 Optical Society of America

Full Article  |  PDF Article

Corrections

Kevin Thompson, "Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry: errata," J. Opt. Soc. Am. A 26, 699-699 (2009)
https://opg.optica.org/josaa/abstract.cfm?uri=josaa-26-3-699

More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (108)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved