Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 35,
  • Issue 23,
  • pp. 5237-5249
  • (2017)

Channel Power Optimization of WDM Systems Following Gaussian Noise Nonlinearity Model in Presence of Stimulated Raman Scattering

Not Accessible

Your library or personal account may give you access

Abstract

The impact of interchannel stimulated Raman scattering (SRS) on optimization of channel powers to maximize the minimum channel margin is examined using a discrete Gaussian noise model for the Kerr nonlinearity. The simultaneous consideration of these two nonlinear effects is found to be incompatible with the goal of a convex SNR expression that can be optimized globally. A sequence of convex optimizations is employed to obtain a locally optimal solution, along with a bound on the degree of suboptimality. Optimization results obtained are most accurate for Gaussian-distributed signals, such as probabilistically shaped high-order-modulated signals. In a dispersion-uncompensated 4000-km fiber system utilizing the full C-band with perfect per-span SRS gain compensation, power optimization yields benefits of 0.25 to 2 dB over optimal spectrally flat power allocations. In systems including both C- and L-band, an optimization method that accounts for both SRS and Kerr nonlinearity effects provides a 0.23 to 0.60 dB margin benefit over a method compensating for SRS gain alone. In a system spanning only the C-band, per-span SRS gain compensation is not critical, as the maximum benefit is a 0.14 dB gain in minimum margin for optimized power allocations. By contrast, in a system spanning both C- and L-band, per-span SRS gain compensation provides a gain of up to 1.23 dB with optimized power allocations and larger gains with suboptimal power allocations.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.