Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 13,
  • pp. 3259-3272
  • (2016)

Power Allocation and Performance of Multiuser Mixed RF/FSO Relay Networks With Opportunistic Scheduling and Outdated Channel Information

Not Accessible

Your library or personal account may give you access

Abstract

This paper studies the performance of a multiuser mixed radio frequency (RF)/free space optical (FSO) relay network with transmit opportunistic scheduling. The outdated channel information (OCI) on the first relaying hop and its effect on the system performance is also studied in this paper. Furthermore, a power allocation scheme is proposed for optimizing the overall system performance. The considered system includes $K$ sources (users), one amplify-and-froward relay and one destination. The users are connected with the relay node through RF links and the relay is connected with the destination through an FSO link. In the analysis, the first hop channels are assumed to follow Rayleigh fading model and the second hop channel is assumed to follow Gamma–Gamma fading model with considering the effect of pointing errors. Closed-form expressions are derived for the outage probability, average symbol error probability, and ergodic channel capacity. Furthermore, the system performance is studied at high signal-to-noise ratio regime, where the diversity order and coding gain are derived and analyzed. Using the asymptotic results, the power of users and relay are determined to minimize the system outage probability under a total power constraint. Monte–Carlo simulations are provided to validate the achieved exact and asymptotic results. Main results show that under weak atmospheric turbulence conditions, the system performance is dominated by the RF channels and a diversity order of $K$ is achieved by the system, whereas under severe atmospheric turbulence conditions, the system is dominated by the FSO channel and the diversity order is determined by the minimum value of the turbulence fading and pointing error parameters.

© 2016 IEEE

PDF Article
More Like This
Two-Way Multiuser Mixed RF/FSO Relaying: Performance Analysis and Power Allocation

Yasser F. Al-Eryani, Anas M. Salhab, Salam A. Zummo, and Mohamed-Slim Alouini
J. Opt. Commun. Netw. 10(4) 396-408 (2018)

Protocol Design and Performance Analysis of Multiuser Mixed RF and Hybrid FSO/RF Relaying With Buffers

Yasser F. Al-Eryani, Anas M. Salhab, Salam A. Zummo, and Mohamed-Slim Alouini
J. Opt. Commun. Netw. 10(4) 309-321 (2018)

Performance Analysis of a Multiuser Dual-Hop Amplify-and-Forward Relay System With FSO/RF Links

Ruijie Li, Te Chen, Luhai Fan, and Anhong Dang
J. Opt. Commun. Netw. 11(7) 362-370 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.