Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 35,
  • Issue 21,
  • pp. 4605-4612
  • (2017)

Bit-Error Ratio Performance Improvement Using Iterative Decoding for Polybinary-Shaped Super-Nyquist Wavelength Division Multiplexed Signals

Not Accessible

Your library or personal account may give you access

Abstract

In super-Nyquist wavelength division multiplexed (WDM) systems with frequency spacing smaller than the signal baudrate, the maximum-likelihood (ML) decoder in the receiver is usually introduced to compensate for intersymbol interference due to tight spectral filtering, such as polybinary shaping. After the ML decoder, symbol errors tend to propagate, causing excess continuous errors. Considering that forward error correction (FEC) is commonly introduced, the excess continuous errors degrade bit-error ratio (BER) performance after FEC, so-called post-FEC BER. In order to suppress the performance degradation, we introduce iterative decoding between the first ML decoder for polybinary shaping and the second FEC decoder in the receiver. First, we calculate BER characteristics of polybinary-shaped super-Nyquist WDM quadrature phase-shift keying (QPSK) signals. The results show that iterative decoding is effective for improving post-FEC BER performance. A lager pre-FEC BER threshold for post-FEC BER < 10−5 is obtained in super-Nyquist WDM case than in the Nyquist WDM case, although a higher signal-to-noise ratio (SNR) is required. Next, we measure the BER characteristics of three-channel duobinary-shaped super-Nyquist WDM 12.5-Gbaud dual-polarization QPSK signals. The iterative decoding reduces the optical SNR penalty by 0.8 dB. A larger pre-FEC BER threshold of 3.1 × 10−2 is obtained in the duobinary-shaped super-Nyquist WDM case, compared with the threshold of 2.2 × 10−2 in the Nyquist WDM case.

PDF Article
More Like This
Adaptive quadrature-polybinary detection in super-Nyquist WDM systems

Sai Chen, Chongjin Xie, and Jie Zhang
Opt. Express 23(6) 7933-7939 (2015)

Super-Nyquist-WDM transmission over 7,326-km seven-core fiber with capacity-distance product of 1.03 Exabit/s·km

Koji Igarashi, Takehiro Tsuritani, Itsuro Morita, Yukihiro Tsuchida, Koichi Maeda, Masateru Tadakuma, Tsunetoshi Saito, Kengo Watanabe, Katsunori Imamura, Ryuichi Sugizaki, and Masatoshi Suzuki
Opt. Express 22(2) 1220-1228 (2014)

Generation and transmission of 512-Gb/s quad-carrier digital super-Nyquist spectral shaped signal

Junwen Zhang, Jianjun Yu, and Nan Chi
Opt. Express 21(25) 31212-31217 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.