Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 9,
  • Issue 12,
  • pp. 985-988
  • (2013)

Channel Length Dependent Bias-Stability of Self-Aligned Coplanar a-IGZO TFTs

Not Accessible

Your library or personal account may give you access

Abstract

We report channel length $L$ ( $L$ ranging from 2 to 40 $ \mu{{m}}$ ) dependence of the electrical stability of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). The a-IGZO TFTs employ a coplanar structure with a ${{SiN}}_{x}$ interlayer used to dope the source/drain regions. After application of positive gate bias stress (PBS), short-channel devices ( $L = 2~ \mu {{m}}$ ) exhibit smaller threshold voltage shifts ( $\Delta {\rm V} _{\rm th}$ ) compared to longer-channel devices ( $L \ge {4}~ \mu{{m}}$ ). It is proposed that carrier diffusion takes place from the high carrier concentration regions under the ${{SiN}}_{x}$ interlayer to the intrinsic channel region, thereby shifting the Fermi level closer to the conduction band. Higher Fermi levels mean less defect states available for carrier trapping – hence the small $\Delta {\rm V} _{\rm th}$ in short devices under PBS.

© 2013 IEEE

PDF Article
More Like This
Optical and electrical properties of In2MgO4 thin film for transistors

Jian Ke Yao, Fan Ye, and Ping Fan
Opt. Mater. Express 8(11) 3438-3446 (2018)

Channel-length-dependent performance of photosensitive organic field-effect transistors

Yingquan Peng, Fangzhi Guo, Hongquan Xia, Wenli Lv, Lei Sun, Sunan Xu, Huabiao Zhu, Xinda Chen, Chen Liu, Ying Wang, and Feiping Lu
Appl. Opt. 58(6) 1319-1326 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.