Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 19,
  • Issue 8,
  • pp. 083901-
  • (2021)

Optimization of optical signal-to-distortion ratio in a channel-interleaved photonic ADC via a coherent multi-frequency RF driver

Not Accessible

Your library or personal account may give you access

Abstract

A microwave-chip-based coherent multi-frequency RF driver is developed for a channel-interleaved photonic analog-to-digital converter (PADC) system, which comprises a multi-class optical demultiplexer and supports a sampling speed of 40 GSa/s. The generated signals from the RF driver are adjustable in both amplitude and phase. We analyze the relationship between the characteristics of the generated RF driver signals and the demultiplexing performance in theory based on the optical signal-to-distortion ratio (OSDR). It is the most effective parameter to evaluate the performance of the demultiplexer in a PADC system without an electronic analog-to-digital converter. By precisely adjusting the amplitude and phase of signals, the OSDR is optimized. The results verify the compatibility between the RF driver and the PADC system.

© 2021 Chinese Laser Press

PDF Article
More Like This
Compensation of multi-channel mismatches in high-speed high-resolution photonic analog-to-digital converter

Guang Yang, Weiwen Zou, Lei Yu, Kan Wu, and Jianping Chen
Opt. Express 24(21) 24061-24074 (2016)

Equivalence of photonic sampling to signal holding in channel-interleaved photonic ADCs by controlling photo-detection response

Shiyu Hua, Na Qian, Anyi Deng, and Weiwen Zou
Opt. Express 30(12) 21736-21745 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved