Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 18,
  • Issue 5,
  • pp. 051404-
  • (2020)

Ultimate capacity analysis of cladding-pumped 10/130 Tm:fiber laser

Not Accessible

Your library or personal account may give you access

Abstract

The ultimate capacity of a cladding-pumped 10/130 Tm:fiber is experimentally investigated with a 793 nm laser diode bidirectionally pumped amplifier. The laser system works stably at the output powers of 52 W, 65 W, and 87 W. Eventually, the damage of the amplifier occurs when the output power reaches about 103.5 W with a total incident pump power of 176.8 W. Considering the incident seed power of 12.3 W, the amplifier conversion efficiency is estimated to be about 51.6% before it is damaged. With valuable exploration, we achieve the first air-cooling 60 W Tm:fiber laser at 1945.845 nm with a spectral linewidth of 0.4 nm. The laser power stability reaches 1.24% during a continuous test time of >65 h. The beam quality is measured as Mx2=1.16 and My2=1.14.

© 2020 Chinese Laser Press

PDF Article
More Like This
High-power diode-cladding-pumped Tm-doped silica fiber laser

Stuart D. Jackson and Terence A. King
Opt. Lett. 23(18) 1462-1464 (1998)

High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations

Daniel Creeden, Benjamin R. Johnson, Glen A. Rines, and Scott D. Setzler
Opt. Express 22(23) 29067-29080 (2014)

LD-cladding-pumped 50 pm linewidth Tm3+-doped silica fiber laser

Zhang Yunjun, Yao Baoquan, Ju Youlun, Zhou Hui, and Wang Yuezhu
Opt. Express 16(11) 7715-7719 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.